{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "### Getting Started with Notebooks on Blueshift\n", "\n", "We first start by importing a few required functions from the `blueshift.research` module. The methods `list_datasets` and `use_dataset` allow us to list available datasets and select one, respectively as shown below:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['nse']\n" ] } ], "source": [ "from blueshift.research import list_datasets, use_dataset\n", "print(list_datasets())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We also import the `symbol`, `current` and `history` functions from the `blueshift.research` module. These form the primary interface to query the selected dataset. Note, **we must call `use_dataset` before** we can use any of these three functions." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "from blueshift.research import symbol, current, history\n", "# This is going to take some time!!!\n", "use_dataset('nse')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Once a dataset is selected, we can use the `symbol` function to fetch an asset from the dataset selected using a string ticker (as we do while writing strategy code). Also, similar to strategy code, we can use the `current` and `history` method to fetch data. The signatures of these functions are as show below:\n", "\n", "- symbol(sym, dt=None, *args, **kwargs): Returns the asset corresponding to the ticker `sym`. Specify `dt` (a pandas Timestamp) to fix the asset resolution time. See [symbol](https://blueshift.quantinsti.com/api-docs/api.html#blueshift.core.algorithm.algorithm.TradingAlgorithm.symbol) for more details. Returns an [asset]() object\n", "- current(assets, columns='close', dt=None, last_known=True): Returns the current value of the asset(s) for the chosen column(s). Specifiy `dt` (a pandas Timestamp) to select the query time (defaults to current timestamp). Set `last_known` to False to return a NaN value in case no data avaiable that matches the exact time specified. The return type depends on the input values. See [current](https://blueshift.quantinsti.com/api-docs/context.html#blueshift.data.readers.data_portal.DataPortal.current) for more details\n", "- history(assets, columns, nbars, frequency, dt=None, adjusted=True): Returns the historical data for the asset(s) and column(s). The meaning of `dt` is same as in `current` above. Set `adjusted` to `False` if no adjustments is to be applied. The return type depends on the input values. See [history](https://blueshift.quantinsti.com/api-docs/context.html#querying-historical-data) for more details\n", "\n", "Since we have already selected the dataset in the above, we can now use these functions to fetch data and make some plots!" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjAAAAGNCAYAAAAPTUtZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAABo10lEQVR4nO3dd3hUVfoH8G9mJr2Q3isJIQRCgNBLQAREkUXFjmXtWFld0dWfbSu7uqAu2EBEBeyKlSYKhBJagBAIIZCQXkkhvc2c3x+Te5MhCWTS7kzy/TzPeUzuPXPnzL0xeTnnPedYABAgIiIiMiMqpRtAREREZCwGMERERGR2GMAQERGR2WEAQ0RERGaHAQwRERGZHQYwREREZHYYwBAREZHZYQBDREREZkejdAN6k6+vLyorK5VuBhERERnB0dEReXl5l63TbwMYX19f5ObmKt0MIiIi6gI/P7/LBjH9NoCRel78/PzYC0NERGQmHB0dkZube8W/3f02gJFUVlYygCEiIupnmMRLREREZocBDBEREZkdBjBERERkdhjAEBERkdlhAENERERmhwEMERERmR0GMERERGR2GMAQERGR2WEAQ0RERGaHAQwRERGZHQYwRERktpy9vWDjYK90M0gBDGCIiMgsuQcF4C8/fYn7V76hdFNIAQxgiIjILEXPmQlLG2uEjh0NWycnpZtDfYwBDBERmaXhM6bJXwePilKwJaQEBjBERGR2HN3dEDRyuPz94DEjFWwNKYEBDBERmZ3I6VMAADqdDgAQMjpayeaQAhjAEBGR2Rk+fSoAIOGnLQCAgBHDoLGyUrJJ1McYwBARkVmxtLFG+KTxAIDdn36OypJSaKys4B8ZoXDLqC8xgCEiIrMSPnEcLG2sUZqbj/zUNJw/dgIAEDKaibwDCQMYIiIyK9Lso1O79gAAzh9LBMA8mIGGAQwREZkNCwsLDGtO4D21ay8AIKO5ByZ4VBQsLCwUaxv1LQYwRERkNgJGDIOTuxtqK6uQfuQYACD3dCoaautg7+IMj+BAhVtIfYUBDBERmQ1p+OjMvgPQNjUBALRNTcg6mQwACBnDYaSBggEMERGZjeFXGea/SFryYLig3UDBAIaIiMyCq58PfIaEQtvUhNN7Dhicy5BnIrEHZqBgAENERGYhsnnxuvNHE1FbUWFwLiPxJLRNTXAP9IdnSJASzaM+xgCGiIjMgjx8tHtvm3N1lVVI2avvlRn7h+v6tF2kDAYwRERk8mwc7BEaMxoAkLyrbQADAEd+3AwAiJk/FxYq/nnr7/iEiYjI5EVMmQi1pQYFaedxISun3Tqndu1FzcUKOHt5YsiEmD5uIfU1BjBERGTypOGj5EtmH7WmbWzEsS2/AgBi5l/bJ+0i5TCAISKiHjfIywN3/OsVBEZFdvtaKo0aEdMmAQBO7dp32brSMFLU1TNgbWfX7fcm02V0ADNt2jT8+OOPyM3NhRACCxYsMDgvhGi3PPvss3IdFxcXbNiwARcvXkRZWRk+/PBD2NvbG1wnKioKcXFxqK2tRVZWFpYuXdrFj0hERH1twXN/wtj512LOYw92+1oho6Nh5+SEqtIyZJ44edm6WUnJKDqfCWs7W4ycc1W335tMl9EBjL29PRITE/H444+3e97b29ug3HfffdDpdPj222/lOhs3bsTw4cMxe/ZsXH/99YiNjcXq1avl846Ojti+fTsyMzMRExODpUuX4rXXXsNDDz3UhY9IRER9yXtIKKLnzAQABI0c3u39iYbP0E+fTo7bB6HTXbH+kR+3AOBspIFAdLUIIcSCBQsuW2fTpk1ix44d8vcRERFCCCFiYmLkY9dcc43QarXCx8dHABCLFy8WJSUlwtLSUq6zbNkycfr06U63zdHRUQghhKOjY5c/HwsLCwuL8eWe5f8Uy5Pi5eIZEtSt673wy9dieVK8GDFzeqfqO3t5ijcS94nlSfHCydND8fvBYlzp7N/vXs2B8fT0xLx587B27Vr52KRJk1BWVoaEhAT52I4dO6DT6TBhwgS5TlxcHBobG+U627ZtQ0REBJydndt9LysrKzg6OhoUIiLqWz7h+t4XnU6Hkpw8AEBQ9IguX89rcDDcA/3R1NCA1PhDnXpNeWERSppnKrkH+nf5vcm09WoAc++996KyshLfffedfMzb2xtFRUUG9bRaLUpLS+Ht7S3XKSwsNKgjfS/VudQLL7yAiooKueTm5vbkRyEiok6Ys/gBAMCJ7b8jcdsOAN0LYKTZR2cPHkFDbW2nX1dxoQQA4OTu1uX3JtPWqwHM/fffj40bN6K+vr433wYAsGzZMjg5OcnFz8+v19+TiIha+ISHYeTsq6DT6bD9/Y+QeeIUACA4OqrL15S2Dzi1s/3F6zpSUXwBAODIAKbf0vTWhadOnYqIiAjcdtttBscLCgrg6elpcEytVsPV1RUFBQVyHS8vL4M60vdSnUs1NDSgoaGhp5pPRERGmvOovvclcdtvKEw7j+rycgCAV2gIbBzsUVdVbdT1HFxd5N6b5DgjAxipB8aDAUx/1Ws9MA888ACOHDmCEydOGByPj4+Hi4sLxowZIx+bOXMmVCoVDh48KNeJjY2FRtMSX82ePRspKSkob/4fgoiITIfv0CEYOWsGdDodfn3/IwBAVUkZSnJyoVKpEDDC+PVghsVOhkqlQnZyCi4WFhv12srmHhgnd3ej35fMQ5emUUdHRyM6OhoAEBISgujoaAQEBMh1HB0dccstt+DDDz9s8/qUlBRs2bIFa9aswbhx4zB58mSsWrUKX3zxBfLz8wEAn332GRoaGrB27VpERkbi1ltvxZIlS7BixYqufk4iIupFsxffDwBI3LoDhekZ8vHMRP26LV3Jgxk+o3n13Z0dr77bkYpi9sAMBEZNb5o+fbpoz7p16+Q6Dz30kKiurhZOTk7tXsPFxUVs3LhRVFRUiPLycrF27Vphb29vUCcqKkrExcWJ2tpakZ2dLZ577rlemYbFwsLCwtK94jt0iFieFC/eSNwnvAYHG5ybcsfNYnlSvHjw3eVGXVNjZSX+dfB3sTwpXvhFhBvdpiETx4nlSfHi2e82KH5/WIwrnf37bXQOzO7du6+4KNGaNWuwZs2aDs+XlZVh0aJFl71GUlISYmNjjW0eERH1MSn35fglvS9Aqx6YkSNgYWEBIUSnrhk2IQbWdrYoLyhEbkqq0W2qlHNgOITUX3EvJCIi6jK/iHBEXT3dIPeltbzUs2iorYPdICe4BwW0c4X2ScNHp3YZl7wrkWYh2TsPgtrSskvXINPGAIaIqI9Z2dpiyWdrMf/ZJ5VuSrfNeVSf+3J86w4Unc9sc17XpEV28mkAQLAReTDDpenTXQxgai5WoKl5Zqqjm2uXrkGmjQEMEVEfCxsfg8CoSExcuEDppnSL37BwjJjZce+LpCWRt+16MO5BAfAdOsTgmH/kUAzy8kBddTXOHUpo85rO4lTq/o0BDBFRHwsYHgEAsHGwh42jg8Kt6To592XLr+32vkgyE/UL2gUMH2Zw3MLCAo999A6WfPYh3PxbFh+Vho/O7DsIbastZYxVWcw8mP6MAQwRUR/zj4yQv3bxaX97FCV4hYbgyfWrMfHmK/cM+Q0Lx4irYqHTavHrB+suW7cw/TwAwCPYMAdmkJcnBnl6QGNlhUm33igfl6dP795n7EcwUFmiD2C4Gm//xACGiKiP+Q83vQDG3sUZD6z6L4JHReHGF56BZ0jQZetf8+iDAIBjV+h9AYDSnDzotFpY29kZBBMerZJ6x994PTTW1nD28oTfsHDotFqc3rO/G5+o9Vow7IHpjxjAEBH1ISdPD4MNBl18vC5Tu2+oNRrcu+JfcPP3BQBorKxw8yvPd7hkhn/kUAy/alqnel8AQNvUhNJc/UKlHsGB8vHWs5LsnQches5MRM7QJ+9mHE9CdVl5Vz8SgJYcGEd3JvH2RwxgiIj6UECr3hfANHpgbvq/ZxE6djRqK6uw5tGnUV9Ti9CxozHuhuvbrS+tunt083YUZ2R16j2Ks7IBAB6B/vIxKZiprawCAEy+7cZuT59urYLbCfRrDGCIiPqQlP+ibWoCADgr3AMz9c5bMPHmBdBptdjw3MtI2XsAW99ZDQCY/+cn4ODmYlDf0d1N3iF6x+qPO/0+UqDjEdTSA+MRqO+B2f3p52hqbERwdBTCJ40DAJzaZfz2AZfidgL9GwMYIqI+JPXApCccBwC4+CrXAzN08gQseG4JAOCnFauQsvcAAGDvxq+RnZwCu0FO+MOzTxm8ZtTcWVCpVMg4ntTp3hcAuJCVA8Bw2EjKgUlPOI6kX3cCAFRqNYozsoy6dkcqL7AHpj9jAENE1IekHpik33YDAFy8lQlgPEOCcPcbf4dKrcahTT8j7tMv5HM6rRbf/PXfAIDR182Be6thnzHz5gAAjv6yzaj3a+mB0QctKo0ars05N8WZ2dj35Xdy3Z4YPgKAigulAAAHNxdYqIz7c+fg5mLWU9wHAgYwRER9xNnLE45urtA2NiG5+Y+0o4cb1Bqjt6XrFlsnJ9y/8g3YOjni/NFEfPP319vUyUk+g1O79kKlUmH6PXcA0PeeBI6IhLapCYnbfzfqPS8058C4BfjBQqWCq58v1BoN6mtqUVFUjPNHE5F96jR0Oh2Ob/ut+x8SQFVJKXQ6HdQaDeydB3X6dfbOg/D8D1/g0Q9X9Ug7qHcwgCEi6iP+zQu5FaSloyy/AI119VCpVBjk7dlnbVBp1Lhn+T/gERSA0tx8fPz0Cx0uFrfrk88AAOMWzIODqwvGXKfvfUmNP4Sq0jKj3rcsvxBNDQ2wtLaGs7ennP8iBTYAsGbx03jrtvuQfTK5Kx+tDZ1WK89kMmYtmMCRI2A3yAn+kUPb5ACR6WAAQ0TUR/yHDwUA5JxKAQCU5RcAAFy8+y6Rd8HSJQifOA71NTX46Kmllw1E0o8cQ1ZSMixtrDHl9oVyAHN083aj31fodLiQnQtAP4wkzUAqzmwJYKrLL3Zp5+nLkWciGbEWjN+wcPlr3/Ahl6lJSmIAQ0QD3pAJY/Hnbz5F4Mjhvfo+AZH6HpjsZH0AU15QCABw8fXp1feVTLrlRky98xbodDps/MtryE9Nu+Jrdn68EQBw1X13wSM4EA21dTj5W1yX3l/qbfEICpRzYYozu5+sezld2Q/Jr9XeTJfu00SmgwEMEQ14I+fMhO/QIYiePbNX38c/8tIeGH0A0xdTqUPHjcGNLzwDANjyvw9wamfnpimf/G03SnJyYWljDQA4tTMODbW1XWpDcYY+gHEPDJCnU1/IzOnStTpL3g/JiJlIBj0wQ8N6vE3UMxjAENGAZ21nCwC9mu/g4uMNB1cXNDU2Ii/1HICeHUKytLFG2PgYzHrkPoycfZXBObcAf/zxzWVQW2pw9Jdt+H3tp52+rk6rxe5WM5QSfjF++Egi98AEB8A9SD+zydR6YGwcHQw2lmQPjOnq29R3IiITJAUwjm69t+R8UPQIAEDB2XQ5abZcCmC6sRaMrZMj7n7j7wgdNwYaS0v5+JaVH2DH6o9h42CP+1e+DrtBTsg8cQpfvrrM6Pc4/P3PmHbnLdBqtUjdf7DLbZWmUvuGD8EgLw+DY71FWgums0m8UsBSV1UNGwd7eAYHQW1p2a1dsal3MIAhogHPys4OQO8GMNFz9MNTqQcOycdK85oDmG5sJzDplhsxdPIEAEB5YRGK0jMQPmk8rn3yEdg7O8MjOADeoSEoLyzCuiXPo6m+3uj3aKitwxs3LoIQAjqttsttLW5ezE4KXmouVqDmYkWXr9cZ8mq8nQxg/CL0w0fnDh3B4JjRsBvkBO/QkB5PLqbuYwBDRAOeta00hNQ7AYy1vR2GxU4GABzb/Kt8vFzKgeniEJKFSoVJt94AAPj6b//Bga+/B6DfHuDGF55B7N23AdAHIOueeg6VzcMpXSFtfdAdFUXFqK+plXu8erv3BWgJYBw7OYQkBTC5p1Nh4+CAsPEx8B0axgDGBDEHhogGPCspB8bF2egVWztjxMzpsLS2RmF6BvLOnJWPlxcW6d/f1gb2Ls5GXzcydjJcfX1QXVaOIz9slo/v/exrbHzhNTno+PylvyMn+Uz3PkQPab3uS+sp1L2lwsjtBPwi9ENIuSmpyDujz1XyYR6MSWIPDBENeFbNPTAqtRr2zoOMXqTtSkZfNxsAcGzLrwbHtY2NuFhUjEGeHnDx8ZIXXWuPX0Q4ombNQPzXm3CxsBgAMOX2hQCAg5t+QlNDg0H9oz9vQ37qOdjY2+P8sRM9+Gm6pzgzW+7l6O0EXgByr5OVrQ1sHOxRV1XdYV21pSW8BocA0PfA2DWv3usbzplIpogBDBENeNKQBqAfRurJAMbexRnhE/U7LF8awAD6YSR9AOPdbi+JxsoKsxffj6vuWwS1RoNRc2dh1b2PwMbeHkOnTIROp0P8V5vafe/OrPPS1y606nW50Ac9MI119aitrIKtowOcPNwvG8D4DBkMtaUG1eUXUV5YJPeWcSaSaeIQEhENeNbNSbxA9xN5R82dhUfXrkLouDEAgJGzr4Jao0F2ckq7f7ClqdTO7STyBkdH4ZmvP8Gsh+6FWqNBXXU1PIIC8MgHb2PmA/cAAFL2xKM0N79bbe5LfT2EBLT0wgyOGXXZer5Dm/NfmvNdCtMyoG1qgr3zIDnxmEwHe2CIaECzUKnkRdoAwLEba8FETJuEO5e9CrVGg5DR0fj2n29g9LX64aPjm9v2vgAti9m1nkptZWuDa59ajKl33gKVSoWK4gv49h9vIP9sOp749H34Dh0i9wrs++KbLrdXCdJidkDfBTAXsnLgGRKEW179C6bddRv2ff4NEn7aivqaGoN60gJ2uaf1AUxTQwOKzmfCZ0gofMOHyEN3ZBrYA0NEA5qVrY3B912dieQ3LBz3/PcfUGs0KM3Nh9pSg1tfewGhY0cDAI5v3dHu68oLDBezGzJhLJ79bgNi77oNKpUKh77/Ga/fcCdO/h6HkuwcrH5kCWoq9FOPL2Tn4My+rq/LooS81LMoyy/AuUMJXV7R11hf/+0/2PfFt6ivqYF3aAgWvrQUr/z2I274y9PynkxAywykvDMtM47ymxcd5DCS6WEPDBENaK2Hj4CuDSG5+HjjwXeWw9rODqkHDuPDx/6Mq+6/C9c+8TAAIC3hmDzj6FJlzWvBeIYE4eZXn8ekm28AAJTm5eObv/4HZy5ZOC4/NQ1rFj+N+X9+Ers//RxCCKPbq6SG2jr867qbIbS6PnvPiqJifPfP/2Lz2+9h7B+uxZTbb4ZnSBCmLboV0xbdijP7D2Lf59/I2wZIPTAAkHfmLMbMuwY+4aF91l7qHAYwRDSgWbVK4AWMD2BsHB3w4LvL4eThjvyzafjk6RegbWzEjg/WoSg9AzMfuBs7Pvi4w9dLQ0jeYYPhHTYYALDvi2/xy5vvthnikGQlJeOdPz5qVDtNia6p64vhdUddVTX2fvYN9n3+LYZMHIupd9yCYdOnYOjkCfJigA21dShqtT6NNJWaPTCmhwEMEQ1o1pcEMMYMIaktLXHfW/+Gd9hgXCwsxoePPmMwy+XErztx4tedl71GaV5LAm5xZja+em0Z0o8c63QbyHhCCKTGH0Zq/GG4+vlg8q03YcLCP8BukBMyjp+A0LX0DkkzkTyCAmBpY43GOuNXMqbewQCGiAY0aQ0YiaNrSwCj1mhww1+extlDCTix/fc2r73tby8ibHwM6qqqseaxZzocJrqcusoqbFq2HNb29ohb/wX/QPax0tx8/PzmO9j23ocIHTsauSlnDc5XlpSiovgCnDzc4Tc0HBmJSQq1lC7FAIaIBjSpB0bb1AS1RmMwhBQxbRIm33YTxt80H8UZmQbrqsx98mHEXD8X2qYmfPLMi3KyZ1fs/cy8ZhL1R4119UjZe6Ddc9knT2P4VdMQMGIYAxgTwllIRDSgSRs5SuuxOLi6wMLCAgDkVVk1lpa4/e8vQ6VRAwAmLPwDZj98HwDgm7/+B6nxhy69LPUjWadOAwACRgxTuCXUGgMYIhrQpB4YaTE4taUGdoOcAABeg4Plev6RQ3H1g/di6JSJWPjSUgDA9vc/wqHvf+7bBlOfyz7ZHMAMZwBjShjAENGAJuXA1FysQM1F/foqUiKvZ0gQAOD4tt8AALMfvg/3rvgn1BoNjvy4BdveWaNAi6mv5TT3wHiGBMHG0UHh1ihnxMxYLPrPX9ssPaAUBjBENKBJPTANNbWoLCkF0DKVWgpgtr/7IU78uhNqSw2s7exw9sARfPXqv5RpMPW56vKLKMnJAwAEREb0+vuNv3E+lh3aKW9HYSrmLH4AY66bg+EzpyndFAAMYIhogJPWgWmoNQxgBnl5wMbBHtqmJlzIymleyj8NaQnH8PEzL0Db1KRks6mPZfdRHoxKo8bcJx6Cla0NRs2d1avvZSy3QD8AgGdwkMIt0eMsJCIa0Kxt9d3h9TW1qGoOYBzcXOEZEgwAKMnOhbapCVWlZVi+8G6zW/mWekb2ydMYdc3VvZ4HE3X1DAzy1G8cKa0MbAoc3FxgY28PAAbbLyiJAQwRDWjSXkj1NTUGPTBCp18ttuh8hlyXwcvAlX0yGUDv98BMuX2h/LXPkFBYqFQGC+spxT0gQP7a00QCGA4hEdGA1lEOjNQDU5ieqVTTyITkJJ+BTqeDi483HLqxY/nl+ISHInTsaGibmtBYXw9rOzu4Bfj1ynsZyz3Qv9XXAfJSA0piAENEA5q0DkxDbeshJBd5CnVheoZCLSNTUl9Tg6Lz+mA2YHhkr7zHlNtvBgAk/bZbXjTRVPZgah3AWNnaYJCXp4Kt0WMAQ0QDmtQDU19Ti8qSMgBSD4w+UVH6o0UkrQcT2AvDSDaODhgz7xoA+s08c8/od8T2M5UA5pKeIM8Q5YeRGMAQ0YAmrQNT32oIyT3AH04e7gAMc2BoYJNnIkX1fA/MuAXzYG1ni/yzaUg/cgz5JrYLtltzD4y0V5dHEAMYIiJFydOoa2pQeaEEAGDr5AgAKC8sQn11jWJtI9MiJfIG9vBMJK/BwbjmsQcBAPs+/xYA5E0lfSNMI4DxCNQn8Z47nKD/3gQSeRnAENGAJifx1tahqrTM4FwR81+olbwz56BtbIK9izNc/Xy6dI2w8TEYMTMWFir9n18HVxc88M5y2Do6ID3hOA5t+gkA5M1Bnb08Ye88qGc+QBfZDXKSg/qUvfEATGMmEqdRE9GAJi2LXl9Tg6aGBtRWVMq/rJn/Qq01NTQg7+w5BERGIGBEpLx/Vmc5ebjj4fffgtpSg4Jz6dj27oeYfs8dcPP3xYWsHHz8p7/ICyTW19TgQlYO3AP94Tt0CM4ePNIbH6lTpATe8sIiuWfIwwQWs2MPDBENaFatplEDkPNgAM5Aorayk5rXg+nCMFL4pPFQW+r7DbzDBuPeFf9C8Kgo1FRU4MPH/4zq8osG9fPO6IMFH4UXtJMCmAtZOSjOyAIAOPt4QWNtrWSzGMAQkfmzsLDAhJvmG0z17Ay1RgONpSUAoL62OYApZQBDHZN3pu7CTKTwSeMAAHs//wa/frBO7vX7+E8vyIFBa7nNAYzf0PButLj73AL0/1+VZOWgqrQMtRWVUKlURv//1tM4hEREZm/CzQtwyyvP48z+g1j9yJ86/Tqp9wVo6YGpKmnJg+EQEl0qq3kmkn/kUKNWybWwsED4pPEAgMTtvyP9yDHs+uQzWNnYoKL4QruvyW8OYJTeUsC9OYC5kJ0LACjKyELQyOHwDA5Ewdk0xdrFHhgiMnvjF8wDAPhFGPcvVevmKdRNjY1y7oE0hFRbUSnPSiKSFKVnoL6mFjb29kYlsvqEh8HRzRX1NTXIPJ4EAKirrOoweAFaZiJ5Dg6GWqNcf4M8hJSdAwByb5HSU6kZwBCRWfMIDkRQ9AgA+hkd9i7OnX7tpfkvQEsAU8j1X6gdOq0WOadTAAABIzq/HozU+5J2+FindzIvLyhETUUFNJaW8AoNMb6xPUTazqAkSx/AFGXoeyaVnkrNAIaIzNrYP1xn8L0xv+hbFrFrWetFynFIO3ysB1pH/VFX8mCGTtYHMGf2HzTqvfIUWNCu9bRpGwd7OLq5AmjVA5OZDUD5qdQMYIjIbFmoVBg7fy4AoK66GgDkPYw6o/U2ApIz+w7grzPnY8v/3u+5hlK/0rKlQOd6YCxtrBEyJhoAkBp/yKj3yuvDBe1UGjWufvBevPr7T1i6aSPsXZzl3pfKklJ5UcdiqQdG4e0EGMAQkdkaMiEGzt5eqLlYgUObfgagn57aWa03cmytovgChBA911DqV6QAxndoWKdyUwaPGQVLa2uUFxQanRiel9ocwIT3biKv79AhWLJxLa5bshgaKysM8vTAH5Y+BffmFXgvNA8fAUBxpv5rOycno4ZsexoDGCIyW9Lw0bEtvyIvRb/5XVd6YFrnwBBdSUlOLqrLL0JjZQWfTgQWUv7Lmf3G9b4ALT0wxiaod5ba0hLXPP4Q/vT5R/CPHIqaixXY9s4a6LRajJ1/LSbdfAMAwwCmqb4epXn6RfyUHEZiAENEZsna3g5RV88AABz5cTMKzp0H0NUcGAYwZBxj8mDCm/NfUo3MfwGAgrTz0DY2wW6QE5y9PI1+/eUEjIjE01+uw5zF90NtqcGJX3fi9QV3YPv7H2HvZ98AAIZMHAugJf9FIs9EUnBFXgYwRGSWoq6eAStbGxSmZyArKVnumndyd4PdIKdOXcO61UaORMaQdqa+XB6MT3gY5v3pUfiGh0Gn03VpOwBtY6M8I863h3phNNbWuP7px/HUhtXwGRKKypJSfPLMi/jkmRflWXhbVn4g97IAQEnzGjASKYAxqx6YadOm4ccff0Rubi6EEFiwYEGbOhEREfjhhx9QXl6OqqoqHDp0CAEBAfJ5a2trrFq1ChcuXEBlZSW++eYbeHoaRpYBAQH4+eefUV1djcLCQrz++utQq9Vd+IhE1B9JXeqn4/YD0M8kkn7hdnYYyarVRo5ExpB2pr60B8Y9KACzF9+P5374HM9+ux4zH7gHAHDu4JE2WwV0Vl4PLmgXMnoknv3mU1x1/11QqdVI+Hkr3rjhTpz4dadBvYbaWnz3j//K37ceQgKA3eu/wOs33Imt76zpdpu6yuiVcezt7ZGYmIiPPvoImzZtanN+8ODB2Lt3L9auXYtXX30VFRUVGD58OOrqWn5BvPnmm5g3bx5uueUWXLx4EatWrcJ3332HqVOnAgBUKhV++eUXFBQUYPLkyfDx8cGnn36KxsZG/N///V83Pi4R9RfOPl4AgNLcPPlYYXoGXH194BUagvPHTlzxGi0bOXIIiYyT1TyE5DU4GJ4hQYiMnYJR181GQGSEXKexvh6n4/bj2NYdSN61t8vvlZdyFph/bbemUlvZ2uK6JYsx5Y6boVKpcLGwGF//7T84Hbevw9ec3rMfW1Z+ALcAP+QkpxicK83J6+BVfcfoAGbr1q3YunVrh+f/+c9/YvPmzXj++eflY+np6fLXTk5OeOCBB3DnnXdi5059xHffffchJSUFEyZMwMGDBzFnzhxERkZi1qxZKCoqQmJiIl5++WX85z//wWuvvYbGxkZjm01E/YxLcwBTll8oHytMO49hUyfBa3Dn8mCsbG0AAPW1HEIi41ReKEF5YRGcvTzx/I9fyMe1TU1IPXAYxzb/ilM741BXVd3t98pL7d5aMEMmjsMtr/4Fbv6+AIAD3/yAn1asQl1l1RVfu2P1x116z77QozkwFhYWmDdvHlJTU7F161YUFhbiwIEDBsNMMTExsLKywo4dO+RjZ86cQWZmJiZNmgQAmDRpEpKSklBUVCTX2bZtGwYNGoThw4e3+95WVlZwdHQ0KETUfzl7SwFMgXysMC0DAOAVGtypa0g9MJyFRF2RdvgoAECn0+Hc4aP45m+v469XXY8PH30GCT9t6ZHgBWgZQnIL8JN/Zjtr/I3zsXjN/+Dm74vS3Hx88PBT+Pqv/+5U8GLqenRzBU9PTzg6OuIvf/kLXnrpJTz//POYO3cuvvvuO1x11VWIi4uDt7c36uvrcfGi4VhgYWEhvL29AQDe3t4oLCxsc146154XXngBr732Wk9+HCIyURpra3l10PKCVj0w6cbNRGrJgWEAQ8b74fW3kbxrL84fP4GLhcW99j7VZeW4WFiMQV4e8BkSiozEpE6/dvwN+n3Cjvy4Bd/+441+9bPeoz0wKpX+cj/88APeeustJCYm4j//+Q9+/vlnLF68uCffqo1ly5bByclJLn5+fr36fkSkHGcvDwD61XdrKyrl44XpGc3nPWHjYH/F67S3Ei9RZ1WXleP4tt96NXiR5J7Rr3PkY2Qir7RfUdz6L/pV8AL0cABz4cIFNDY2Ijk52eD46dOnERiov4kFBQWwtrbGoEGDDOp4eXmhoKBAruPl5dXmvHSuPQ0NDaisrDQoRNQ/ufjoe2LL8w17ausqq+Q/Jp6dmIlkxQCGzIS0J5IxC9rZOjnBwdUFAFCcmdUr7VJSjwYwjY2NOHz4MIYOHWpwPDw8HJmZ+jUaEhIS0NDQgKuvvtrgfFBQEOLj4wEA8fHxiIqKgoeHh1xn9uzZuHjxYpvgiIgGHmkGUllBYZtz0jCSdycSeaWF7LgODJk6eSq1EVsKeDbvVVReUNgvlwro0jTqsLCWGxgSEoLo6GiUlpYiOzsbb7zxBr788kvExcVh586dmDt3LubPn48ZM2YAACoqKrB27VqsWLECpaWlqKiowMqVK7F//34cPKhfpXD79u1ITk7G+vXr8dxzz8Hb2xv/+Mc/8M4776ChoaFnPjkRmS2X5gTeS3tgAP3KpeGTxncqD8aaK/GSmZACGJ/wMFioVBA63RVfIy0yV5TR/3pfgC4EMGPHjsWuXbvk7998800AwMcff4z77rsP33//PRYvXowXXngB//vf/3DmzBksXLgQ+/a1zDV/+umnodPp8O2338La2hrbtm3DY489Jp/X6XS4/vrr8d577yE+Ph7V1dX45JNP8Morr3TjoxJRf+HcPITUegaSpDCtOZE3rBMBTAebORKZmgtZOaivqYW1nS3cA/3llXAvR1rmvzN1zZHRAczu3bthYWFx2Trr1q3DunXrOjxfX1+PJ554Ak888USHdbKysjBv3jxjm0dEA4C0Bkx7PTBSABM4fBisbG0u23XOHBgyF0KnQ8HZNARFj4Df0CGdCko8Q/QBjLE7YJsL7oVERGZHXgOmnRyYrKRklOTkwd7FGbH33HHZ60gL2XEdGDIH0oJ2Pp1c0E6agdRfe2AYwBCR2WmZhdR2CEnb1ITNb70LAJh5/13yejGX0lhZQa3Rd0LXM4mXzEBuin4qtV/ElQMYlVoN90B/AEBRBntgiIgUZ+/iDEsba+h0ug7X3zi+7TdkJp6EtZ0drnn8oXbrSGvAANzMkcxDfvNUat/wKwcwLr4+0FhaorGuvt2h1v6AAQwRmRUp/6WyuATapqYO6/20fCUAYMJN8+EdNrjNeSn/pbGuvlMzOoiUln82DTqdDoO8PGDv4nzZutIMpOKsbAgh+qB1fY8BDBGZFefm7UTKOljUUnL+2Amc+HUnVGo1rn/m8TbnreQp1Bw+IvNQX1ODkuxcAFfe2NEjpH/nvwAMYIjIzFxuBtKlfnnrXWgbmzBs2mSETxpncI7bCJA56uyCdp7NU6j7a/4LwACGiMyMvApvJwKYC1k52PfltwCA+X9+Ehaqll95XAOGzJEcwFwhkVeegXSePTBERCZBnoF0hSEkya/vf4Taikr4Dh2CsfPnysflnajZA0NmJDelOYC5whBSf1+FF2AAQ0RmRl4DppMzK2ouVmDH6o8BANc+uRiWNtYAWuXAsAeGzEh+cw+MV0gw1JaW7daxtreDk4c7AKCYQ0hERKbBmBwYyd7Pv0FJTh4GeXlgevPidtZ23MiRzE95YRGqyy9CbamBdwf7fUn5LxUXSlBXVd2XzetTDGCIyGyoLS3lf1m2tw9SR5oaGrD57fcAADMfuBuObq4tQ0hcA4bMzJXyYKQZSP11CwEJAxgiMhvOXp4A9DOHai5WGPXa41t3IPPEKXlxOymJl7OQyNy0zERqP4Dx7OebOEoYwBCR2ZBmIJW3swdSZ7Re3C4wKhIA14Eh85MnrcjbUQ+MnMDLHhgiIpNwuT2QOuP80USc2LELKrUakbFTAHAWEpkfaU8k36HtrwUj5cb05ynUAAMYIjIjxqwB05Ff3nwH2saWLQi4DgyZm6L0DDQ1NsLOyUkO6iXO3l7wDhsMnVaLrJPJCrWwbzCAISKz4REYAAAo6+IQEmC4uB3AHBgyP9qmJhSmnQfQthcmcrq+ZzEz8SSqy8r7uml9igEMEZkFexdnjJx9FQAg49iJbl1rxwfrUFtRCQCoq+6/00yp/5LyYHwuWdBu+IxpAIBTu/b0eZv6GgMYIjIL0+66FVa2NshKSsa5QwndulZ1+UVs/MtrOL51B5J37e2hFhL1nbxU/Uwkv1YBjLWdHcLGjwEAnBoAP9capRtARHQlNg72mHr7zQCA3z78pEeueXrPfpzes79HrkXU1/KatxQIGDEMFioVhE6H8MnjobGyQnFmdr9fAwZgDwwRmYHJty2ErZMjCs6l49TO/t81TnQl2SdPo6aiAi4+3ph8200AgOEzpgIYGMNHAAMYIjJxljbWiL37NgDA72vXQwihcIuIlFdfU4PNb78PALj2iYfh5OGOYdMmA8CAGRZlAENEJktjZYWrH7oXjm6uKMnJw7GtvyrdJCKTceCbH5B1Mhm2To548N3lcHB1Qc3FCpw/3r0kd3PBHBgiMikqtRph42Mw+rrZiLp6BmwdHQAAuz7eCF2TVuHWEZkOodPhu3/8F0999iH8IsIBACl74wfM/ycMYIjIJARFj8CY6+Yg+pqr4ejmKh8vLyjEwW9/RPzX3yvXOCITlX3qNA58/b2cBzOQcsQYwBCRYjxDghAz/1qMvnY23Px95ePVZeVI3P47jm7ejoxjJ5j3QnQZm//3PiKnT4Ha0hIp+w4o3Zw+wwCGiBThERyIZ7/bALVG/2uovqYGSb/txrEtvyI1/tCA6QYn6q7aikr8d+HdsLCwQF3VwFmYkQEMESnCb+gQqDUalObl4+cV7yB591401tUr3SwisyStLD2QMIAhIkUM8vIEAGQcT0Litt8Ubg0RmRtOoyYiRQzy1gcwFwuKFG4JEZkjBjBEpIhBnh4AgPJCBjBEZDwGMESkCOfmIaSLRcUKt4SIzBEDGCJSxCAvfQ/MRfbAEFEXMIAhol4VPmk8ln7/GULGRMvHLFQqOHm4AwDKC9kDQ0TGYwBDRL1q3A3z4B0agtHXzpaPObi6QK3RQNvUhMoLJQq2jojMFQMYIupVXoODAQAeQQHyMSn/pbKkFEKnU6JZRGTmGMAQUa+xUKngGRIEAHAPbAlgpDVgOIWaiLqKAQwR9Rq3AD9YWlsDAJx9vKCxstJ/7c0p1ETUPQxgiKjXeIcOlr9WqVRw9fMB0LIGzEUm8BJRFzGAIaJe4x0WYvC9lAcziGvAEFE3MYAhol7jFWoYwEh5MHIAwyEkIuoiBjBE1Gu8mwOYnOQzAAB3qQeG2wgQUTcxgCGiXqFSq+UZSKd2xgEAPJp7YLiNABF1FwMYIuoVbgF+0FhZob6mFqkHjgAA3IP8YTfICZY2+plJFUUXlGwiEZkxBjBE1Cuk4aOi8xkozsgEALj4eMM90B+AfhG7poYGxdpHROaNAQwR9Qopgbfg3HlUl19ETUUFACB07GgAnEJNRN3DAIaIeoXUA1OYlg4AuJCZAwAIHR8DgPkvRNQ9DGCIqFd4hekXsSs4dx4AcCErGwAQMnokAE6hJqLuYQBDRD1OpVbDMzgQAFCYLgUw+h4YG3t7AJxCTUTdwwCGiHqce6C/PAOpLK8AAFDc3AMjYQ4MEXUHAxgi6nFeg4MB6HtfhBAAgAuZlwQwzIEhom5gAENEPU7KfylMOy8fK25O4pUwB4aIuoMBDBH1uNCYUQBaEngBoLaiAtXlF+XvOYRERN3BAIaIetTMB+5G+KTx0DY24cz+AwbnpGGk2soq1NfUKNE8IuonGMAQUY8ZftU0XPvUYgDApmUrkJ+aZnBeSuTl8BERdRcDGCLqET7hoVj079egUqmw9/NvEP/1pjZ1pKnUDGCIqLuMDmCmTZuGH3/8Ebm5uRBCYMGCBQbn161bByGEQdmyZYtBHRcXF2zYsAEXL15EWVkZPvzwQ9g3rw0hiYqKQlxcHGpra5GVlYWlS5d24eMRUVfYDXLCvKcfg4uPd6fquwf648F3V8Dazg6p8Yfww3/earfeqZ17UF5YhMTtv/dga4loIDI6gLG3t0diYiIef/zxDuts2bIF3t7ecrnjjjsMzm/cuBHDhw/H7Nmzcf311yM2NharV6+Wzzs6OmL79u3IzMxETEwMli5ditdeew0PPfSQsc0loi6YcsfNmHn/3bjxxT9fsa5HcCAeW/cunL08UXAuHZ8++zJ0Wm27dfPOnMXfZy3Awe9+6ukmE9EAJLpahBBiwYIFBsfWrVsnNm3a1OFrIiIihBBCxMTEyMeuueYaodVqhY+PjwAgFi9eLEpKSoSlpaVcZ9myZeL06dOdbpujo6MQQghHR8cufz4WloFa7lz2qlieFC9eP7pH2Ls4d1jPMyRIvPr7T2J5Urz487frhYOri+JtZ2FhMe/S2b/fvZIDM2PGDBQWFiIlJQXvvvsuXF1d5XOTJk1CWVkZEhIS5GM7duyATqfDhAkT5DpxcXFobGyU62zbtg0RERFwdnbujSYTUSuufr4AALWlBqPmzmq3jtfgYDz60Ttw8nBH3pmzeP/BJ1FVWtaXzSSiAazHA5itW7finnvuwdVXX43nn38e06dPx5YtW6BS6d/K29sbRUWGCXxarRalpaXw9vaW6xQWFhrUkb6X6lzKysoKjo6OBoWIusbVz0f+OmbeNW3Oe4cN1gcv7m7IPZ2K9x98EtVl5X3YQiIa6DQ9fcEvv/xS/vrkyZM4ceIE0tPTMWPGDPz+e+8l7r3wwgt47bXXeu36RAOFxtoagzw9AAA6nQ5B0SPgHhQgr+HiPSQUj364Eg6uLshJPoP3H3oKtRUVSjaZiAagXp9Gff78eRQXFyMsLAwAUFBQAE9PT4M6arUarq6uKCgokOt4eXkZ1JG+l+pcatmyZXBycpKLn59fT38UogHB1Vffy1lXXY0z+w8CaOmF8QkPw2NrV8HB1QXZp07j/YeeZPBCRIro9QDGz88Pbm5uyM/PBwDEx8fDxcUFY8aMkevMnDkTKpUKBw8elOvExsZCo2npIJo9ezZSUlJQXl7e7vs0NDSgsrLSoBCR8Vz99fkvpTl5SPhpKwBgzPXXwG9YOB5duwr2Ls7ISkpu7nnh/2dEpIwuTaOOjo5GdHQ0ACAkJATR0dEICAiAvb09Xn/9dUyYMAFBQUGYOXMmfvjhB5w7dw7btm0DAKSkpGDLli1Ys2YNxo0bh8mTJ2PVqlX44osv5CDns88+Q0NDA9auXYvIyEjceuutWLJkCVasWNGDH52I2uPWnMBbmpuHk7/vRl11NdwD/PHEJx/A3nkQMhNP4oOHn0JdZZXCLSWigc6o6U3Tp08X7Vm3bp2wsbERW7duFYWFhaK+vl6cP39efPDBB8LT09PgGi4uLmLjxo2ioqJClJeXi7Vr1wp7e3uDOlFRUSIuLk7U1taK7Oxs8dxzz/XKNCwWFhbDMv/PT4rlSfHiD88tEQDE7f94WSxPihfLk+LFkxtWCxsHe0Xbx8LC0r9LZ/9+G53Eu3v3blhYWHR4fu7cuVe8RllZGRYtWnTZOklJSYiNjTW2eUTUTdIMpNKcPABA/NebEHP9Ncg4noQPH/8z6qu5CSMRKa/HZyERkXlzlYeQ9EO6mYkn8deZ81FdVg4hhJJNIyKSMYAhIgOu/voemJKcXPkYF6gjIlPD3aiJSGbr5Ag7JycAQFlevsKtISLqGAMYIpJJ+S+VJaVoqK1TuDVERB1jAENEMjn/pTmBl4jIVDGAISJZ6zVgiIhMGQMYIpJJq/CWsAeGiEwcAxgikslrwLAHhohMHAMYIpK5+es3QZXWgCEiMlUMYIgIAGBhYQGX5p2oS9gDQ0QmjgEMEQEAHN3dYGltDZ1Wi/KCQqWbQ0R0WQxgiAhAyxTqsvxC6Jq0CreGiOjyGMAQEYCWLQSYwEtE5oABDBEBaLuJIxGRKWMAQ0QAADd/LmJHROaDAQwRAQA8ggIBABcysxVuCRHRlTGAISIAgEdQAACgmAEMEZkBBjBEBFsnJzi4ugAAijOzFG4NEdGVMYAhIniG6IePygsK0VBbp3BriIiujAEMEcn5L0UZ7H0hIvPAAIaI4BGsD2CKGcAQkZlgAENE8GQAQ0RmhgEMEck9MBxCIiJzwQCGaICzUKngHugPACjOyFS4NUREncMAhmiAc/HxgqW1NRrr61GWz12oicg8MIAhGuA8goMAABeyciB0OoVbQ0TUOQxgiAY4eQVe5r8QkRlhAEM0wHmG6HtguIUAEZkTBjBEA1zLGjBM4CUi88EAhmiAk4aQOIWaiMwJAxiiAczK1gYuPt4AgKLzDGCIyHwwgCEawNwD9b0v1WXlqK2oULg1RESdxwCGaADz5Aq8RGSmGMAQDWDu3AOJiMwUAxiiAUzexDGTAQwRmRcGMEQDmLQGDBN4icjcMIAhGqAsLCzgGRIMAChIS1e2MURERmIAQzRAufj5wNrOFo319SjJzlW6OURERmEAQzRA+YQNBgAUpWdyE0ciMjsMYIgGKK9QfQDD4SMiMkcMYIgGKJ8hzQHMOQYwRGR+GMAQDVDeYVIAc17hlhARGY8BDNEApFKr5SnUBefSFG4NEZHxGMAQDUDugf7QWFmhvqYWZXkFSjeHiMhoGqUbQG1ZWFhg8u0LYT/ICXXVNaivrsa5w8dQkp2jdNOon/AKDQEAFKadhxBC4dYQERmPAYwJGjJxHG568c8Gxy4WFeMf19wIXZNWoVZRfyJNoeYMJCIyVxxCMkHugf4AgJKcXBz9ZRtqKyoxyNMD4ZPGK9wy6i+8h4QCAArOMoAhIvPEAMYEDfL0AACc3hOPjX95DUd+2gIAGHPdHCWbRf2INITEKdREZK4YwJigQV76AOZiYTEA4Ojm7QCAETNjYWVro1i7qH9QW1rCIygAAIeQiMh8MYAxQYO8PAHo814AIOvEKZTk5MLazg6R06cq2bQBxS3AH3f88xW4+vsq3ZQe5REcCLVGg9qKSjlIJiIyNwxgTJA0hFRR1PLHReqF4TBS37n2yYcx9g/XYvbD9yndlB7VksDLBeyIyHwxgDFBUgBTXlgkHzv2iz6AiZg6CXaDnBRp10Ci1mgQMWUiACB03GiFW9OzWlbg5fAREZkvBjAmxtrODjYO9gBg0L1fmJ6B3JRUqC01GDn7qitex8bBHiGjR2LSrTdi3tOPyX+0qHMGx4yCrZMjAMDN3w8uPt4Kt6jneIcxgZeIzB/XgTExUgJvbWUVGmprDc4d/WU7/CLCMeGmPyAnOQXFmdloqm+A5+Ag+AwJhc+QUHg3//fSP7iBUcPx3v2P99nnMHeX5hqFjhuDIz9uVqg13efg6oLBMaMwOGYUwsaPBcAAhojMGwMYE3NpAm9rx7f8ivl/fgKBUZF4+suPAQDapiaoNe0/xvKCQhSdz0T4pPEIGTUS1nZ2qK+p6bW29yfDr9IHMPln0+AzJBSh40abVQAzyMsDg2NGI3TsaAyOGQWvwcEG52sqKpBz+owyjSMi6gEMYLrJxsEedVXVPXY9Kf/lYqv8F0l5YRE2LVuO6DlXwyM4EI5urvrZJJVVKDibhvxWpeBcOmorKgEAL2z+Gu4B/ggdNwbJu/f2WFv7K6/QELj5+6Gxvh7b3lmDP771b4SNi1G6WZfl5u+HwWP1PSyhY0fDzd+vTZ281HNITziOtCPHcO7gEdRVVinQUiKinmF0ADNt2jQsXboUMTEx8PX1xQ033IAffvih3brvvfceFi9ejD/96U94++235eMuLi5YuXIl5s+fD51Oh2+//RZLlixBdXVLIBAVFYV33nkH48aNQ3FxMVauXIk33nijCx+x9wSPGonHP3kPJ37diQ1LX+6RPWXkAKadHhgA2PvZN9j72TcAABtHB1jZ2hrMVmpP6v5DcL/NH+GTxjGA6YThM6YBAM4ePIIz+w9B29gEVz8fuPh6m9zGh4NjRuHOZa+2GTLUabXITUlF2pFjSE84jvSERNRWVCjUSiKinmd0AGNvb4/ExER89NFH2LRpU4f1brjhBkycOBG5ubltzm3cuBE+Pj6YPXs2LC0tsW7dOqxevRqLFi0CADg6OmL79u3YsWMHFi9ejKioKHz00UcoLy/HmjVrjG1yrxm34DqoVCqMuuZqFGdmYevK1d2+pryI3RWCEgCoq6zq1L+iz+w/hMm33YShkyd0u30DwfAZ+uGj5F370FBbi+xTpxE8Kgph42Nw+PtfFG6doen33gEXH280NTYi++RpuYcl4/gJ1FdzuJCI+i+jA5itW7di69atl63j6+uLlStX4pprrsEvvxj+wo+IiMC1116LsWPHIiEhAQDw5JNPYvPmzXj22WeRn5+PRYsWwcrKCvfffz8aGxuRnJyMUaNG4ZlnnjGZAMbCwgKR06fI389++D4UnE3H8a07unXdQZ7uANCjC4ydO5wAbVMTPEOC4OLjjbJ80+pFMCUOri4IHDkcAJAcp++tOncoAcGjohA6doxJBTBqjQZDJugTclfe9TByklMUbhERUd/p8WnUFhYWWL9+Pd544w0kJye3OT9p0iSUlZXJwQsA7NixAzqdDhMmTJDrxMXFobGxUa6zbds2REREwNnZud33tbKygqOjo0HpTf6REXDycEdddTV2r/8CAHD731+Cf2REt64rJ/H2YABTV1mFrCT9swifNK7HrtsfDYudDJVKhezkFPkZpB05CgAIGz9Gyaa1ETxan5hdcaEEuUzIJaIBpscDmOeffx5NTU343//+1+55b29vFBUZJqhqtVqUlpbC29tbrlNYWGhQR/peqnOpF154ARUVFXJpb+iqJ0U2DzOc2XcQP/13JZJ374OljTVu+/v/deu6LTkwbZN4uyM1/hAAcEfrK5CmTyfv3CMfyziehKbGRrj4eJvUtgIRU/UL7Z3Zd7BH8q+IiMxJjwYwY8aMwZIlS/DHP/6xJy/bKcuWLYOTk5Nc/PzazsLoSXKexO59EDodPnvxb9A2NsE3PAxuAf5duqZKo4aDmyuAzuXAGCN1vz6AGTJxHCxUXL+wPSqNGuET9T1Up/fEy8cbauuQ3dyDZUqzkSKmTgIAnNl3QOGWEBH1vR79SzZt2jR4enoiKysLjY2NaGxsRHBwMJYvX47z5/X7rhQUFMDT09PgdWq1Gq6urigoKJDreHl5GdSRvpfqXKqhoQGVlZUGpbc4e3vBLyIcOp0Op/fsBwDUVlQgPeE4ACAydnKXruvk5gaVSoWmxkZUl5b3UGv1sk4mo7ayCvbOg+A/bGiPXru/CI6Ogo2DPapKy9rkk5w7rB9GMpVtBZw8PeAbHgadTocz+w8q3Rwioj7XowHM+vXrMXLkSIwaNUouubm5eOONN3DNNdcAAOLj4+Hi4oIxY1ryCWbOnAmVSoWDBw/KdWJjY6FptUDb7NmzkZKSgvLy8p5scpdIybuZx5NQXVYuH0/es8/gvLEGeesDu4qiCz0+JKDTanH24BEAHEbqiDRL68z+tkMyaYelPBjT6IGJaG5rdlIyai5yejQRDTxGBzD29vaIjo5GdHQ0ACAkJATR0dEICAhAaWkpTp06ZVAaGxtRUFCA1NRUAEBKSgq2bNmCNWvWYNy4cZg8eTJWrVqFL774Avn5+QCAzz77DA0NDVi7di0iIyNx6623YsmSJVixYkUPfvSuk/JfTl2ypkrybn0AM3jsaFjb2Rl93SutAdNd0jDS+Juul2faSHzCQ+ETHtor72suhrbKKblURmISmhoa4Ozl2eUhwp4UMU0/fJTC4SMiGqCMDmDGjh2L48eP4/jx4wCAN998E8ePH8ff/va3Tl9j0aJFSElJwW+//YbNmzdj7969ePjhh+XzFRUVmDNnDkJCQpCQkIDly5fjb3/7m0lMobaytcWQ5n+FJ+8yDGAuZGajOCMLGkvLLs326e0A5uTvu1FVWgb3AH8s2fghFv3nr7j6oXux9PvP8Oy3G/D0Fx/DKzSkV97b1Dm4uSCgeQbZmfi2AUxjXT0yk04BUH42kkrdkquTsjf+CrWJiPono9eB2b17NywsLDpdPySk7R/EsrIyedG6jiQlJSE2NtbY5vW6oZPHQ2NlhQvZOShMz2hzPjluH6YHByJy+lQk/bbbqGv3dgBTWVKK/y68G9c++QjG3TAPY66bY3BebanB1Dtuxrf/MK0Vj/uCNKyWnZyCqpKyduukHTqK0JjRCBs3Bge//bEvm2cgMGo4bJ0cUV1+EdmnuPYLEQ1MnI5ipMhWq7S253ScPql3WOxkowI9oNUqvAU9O4W6tcoLJfjq1X/hrdvuw4lfd+L0nv344qW/46OnngMAxMy/FjaODr32/qYqYkrz8NHejodkWhJ5le2BiZimb2vq/oMQOp2ibSEiUgo3czTSr+9/hLyUszh/LLHd8+kJx1FXVQ1HN1f4Dx+G7JNtF/PryOV2ou5puSmp+OSZFw2OSTsvj/vDddiz8ateb4OpsLCwkBN4L5dTkpl4Eo319Rjk6QH3oABcyMzuqyYakFbf5ewjIhrI2ANjpNLcfOzZ+BVykttf+VTb1CT/YTF2OnVvDyFdyb7PvwUATLl9odG9R+bMb9hQOLi6oK6qGpknTnZYr6mhAZknpDwYZWYjWdpYIyByGAAg7cgxRdpARGQKGMD0gtNx+uGlYUZOp1Y6gEn4eStqK6vgERw4oKZaD52i731JPXAYuibtZeumHdJvgRE2Vpn1YAKjhkNtqUF5YRFKc/MVaQMRkSlgANMLTu+Jh06rRUBkBPyGhXfqNbZOTrC0sQagXwdGCQ21tfJmhVPuuFmRNihhxEx9snhnVrQ919zrEapQD0zIGP3yBeebF00kIhqoGMD0gqrSMnlX6qsfvLdTr5ESeKtKy9DU0NBrbbuSfV/qh5GGxU6Gq5+PYu3oK6OuuRqBIyLRWFePU5dMi29P1olTaKyrh5O7GzxDgvqghYYGNwcw6Ufbz8EiIhooGMD0kt8+/BQAEDVrRqf+0Dl7KTt8JLmQmY1zh49CpVL1+2EkK1tbzF/6FABgx4efoPJCyRVf09TQgIzEJAB9PxtJpVYjKHoEAHSYRE5ENFAwgOklBefScWLHLqhUqsv2wljb2SHq6umYtug2AMoHMIB+tg2gT27tz2Yvvg/OXp64kJ2DXes2dvp1UvJsWB8HML5Dh8DG3h41FRUoOJvep+9NRGRqOI26F/225mOMnDUDo6+bjW3vfYjSnDwAgHugP4bFTkFk7GQMHjsaGktL+TXZJ08r1VxZzmn9DKv+vOmjZ0gQYu++HQDw/b/fMmrY7tyhBODxh/q8B0bKf8k4ltTje2UREZkbBjC9KCf5DFL2HkDE1IlYsPQplOTkYdi0yW2GlIozs3E6bj+S4/bhXPOGi0rKbZ4i7hMeCpVGfcWZOeZowXN/gsbSEsm798mzxjorKykZjXX1cHRzhdfg4HZXZO4NLfkvx/vk/YiITBkDmF62Y83HiJg6ESNmTpePaRubkJZwTA5alFoQrSMlObmoraiErZMjvAYHIz81Tekm9Sj3oABETJ0IbWMTvv/PW0a/XtvYiPPHTyB84jiEjY/pswBGnoF09ESfvB8RkSljANPLzh9NxOEfNiN03GicO5iA5Lh9SI0/hPrqGqWbdlm5KakIGx8D/2FD+10AM2ruLABA6sHDKMnO6dI10g4fRfjEcQgdNwb7vvi2J5vXLo/gQDi6uaKxvh7Zp5QfZiQiUhoDmD7wxUt/V7oJRss5fQZh42PgN2woDv+wWenm9KhR11wNAEhsnureFecONe+LNHY0LCwsej0nJWS0vvclKykZ2sbGXn0vIiJzwFlI1K7cfprI6x02GD5DQtHU0ICk3+O6fJ3sk8mor6mFg6sLvELb7rje0wbHMP+FiKg1BjDULmmvJ9+IIbBQ9Z8fE2n46My+g6irrOrydbRNTcg4rs9FCRvfe7ORbBzsseD5PyHm+rkAgPMJXP+FiAhgAEMdKM7MRn1NLazt7OARFKB0c3qMNHx0fFvXh48kaYebtxUY2zsBzPAZU/H8j18g9q7boFKrcfiHX5Aaf6hX3ouIyNwwB4baJXQ65J05i5DRI+E3bCiKzmcq3aRu84sIh0dwoH7bgJ1X3jbgSs4d1m/sGDpuTI/nwTi4uuCe5f+ExsoKRecz8d2/luPsgcM9dn0iInPHHhjqUH/Lgxk1V9/7khy3D/U13Z8Fln3qNOpramDvPAjeQwZ3+3qtjZo7CxorK+Qkn8F/F97N4IWI6BIMYKhD0oq8nd1R29RFX6PPfzm+7bceuZ6uSSuvydLTw0gx8/U5L4d/+JmzjoiI2sEAhjokJfL2hx4Y36FD4Obvi/qaWqNX3r2ctCP66dRh42N67JqeIUEIHBEJbWMTjm3pfq4OEVF/xACGOlSYfh5NDQ2wdXKEq7+v0s3plvCJ4wDoF6BrrKvvseueO9ScB9O8HkxPiJl/LQAgZd8BVJeV98g1iYj6GwYw1CFdkxZ5qecAmH8vzJDmACa1h3NJcpLPoK6qGnaDnOA7dEi3r2dhYYEx8+YAAI78tKXb1yMi6q8YwNBl5Z5OBQD4mXEAo7a0xOCYUQDQ48mwOq0W6QnHAfTMMNLgmFFw9fVBbUUlknd1f6YUEVF/xQCGLiunH8xECo4eAStbG1RcKEHBufQev/7ZQ/odxMMmdD+AkYaPErf/jqaGhm5fj4iov2IAQ5eVm2z+M5GGTNIPH/XWVORzB/V5MINjRkGlUXf5Ohpra4ycfRUAIOHnrT3SNiKi/ooBDF1W/tk0aJua4OjmikFeHko3p0uGTBgLADh78EivXD8/9Ryqyy/Cxt4eAcOHdfk6I2ZMha2jA0pz83H+KLcMICK6HAYwdFlNDQ0oTDsPoPPDSDf937O4c9mrJrGHko2DPQJHRAIAzh7onQBGCCHPRupOHow0fJTwy9Ze392aiMjcKf8Xhkxey4J2Vw5g3Pz9MOX2hYi5fi58hoT2dtOuKHTcGKjUahSdz0R5QWGvvY8UwAwZP9bguMbKqlOvd3B1wdApEwAACT9x+IiI6EoYwNAVGbOlgJRvAgBB0SN6rU2dJa3/0lvDRxIpgAkeHQWNlRUsLCxw74p/4e97t3VqDZ3R186GWqNBVlIyijOyerWtRET9AQMYuqKc5Oap1JFXDmCkgAEAgqOjeq1NnSWv/xLfu3sJFZ3PxMWiYlhaWyMoegSufuhejJx9FaxsbRA08sqBnLR1ANd+ISLqHAYwdEV5Z85Cp9PB2csTDm4uHdazUKnkhFkACBo5vNfaNOuR+/DS9k1w9vLssI6Tpwe8BgdDp9XKS/73JqkXZtbDf8Q1jz0oH3dwcb7s6zxDghAwfBi0jU04vuXX3mwiEVG/wQCGrqihtlYe1vCL6LgXxn/YUNgNcpJ3evYIDoS986BeadPY6+fCxccbQyaO7bCOFEzlJJ9BbUVlr7SjNWk6dfjEcVCp1Wis129Z4ODacdAHtNo6YG88qssv9m4jiYj6CQYw1CmdyYNpPVxTmJ4BAAjsxPCJsSxUKrj4+QAAXP39OqwX3kvbB3REWtAO0E8/j1v/JQDA3tW5w9cYbB3AtV+IiDqNAQx1Sk4nFrQLnyQFMIeQeeIkAP0quD3N2dsTGktLAIBrcyDTHql3prcWsLtUWV4Bzh9NRFVpGT798/+hLK8AAOB4mR4Ybh1ARNQ1GqUbQOZB3lKgg0ReSxtrhIweCUDf46HTajH+hut7ZSaSe2CA/LWbX/szfLwGB2OQpwca6+qRcTypx9vQkXfuewwaK0s01tXDa3AwAMDepeMAhlsHEBF1DQMY6pTcFP1MJDd/P9g6ObbJKRk8ZhQ0VlYozcvHhcxsef2TwKhIWKhUEDpdj7XFLaBl2KijKcpS70v60eN9GhgInQ6Ndfrcl6qycgAd58BY2lgjes5MANw6gIjIWBxCok6pq6zChewcAIBfRNthJCn/RVrttjDtPOqqqmFtZwfvsME92hb3Vnkvgzw9oLG27rg9vbz+y+VUlZYB6HgW0vAZ02DjYI+SnDxuHUBEZCQGMNRpuaf1vTDtJfK2zn8B9D0RWSeTAfT8ejCte2AAwNXX2+B7lVqNsHH6Jf37Kv+lPVWl5QAAWydHqJtzdlqT1n45+ss2bh1ARGQkBjDUaXIi7yV5MPYuznKvjLQWCgBkJuoTeXs6D8Y90N/g+0uHkQJGDIONgz2qyy8iN+Vsj763MeoqK6FtbAKgv0etObi5YOhk/dYBXLyOiMh4DGCo0zqaSi1tlliQdl4eNgGAjER98qwxC9rZOjni/pVvYNqiWzusI/XASFO1L03kldZ/OXcooUdzb4wlhEB1eTmAtjORRs/Vbx2QeeIULmRmK9A6IiLzxgCGOk1K5HUPCoC1nZ183H94BAAg51SKQf2sE6cA6FeatRvk1Kn3iL37dgyfMRVXP3Rvu+cd3FxgbWcHnU4n9/a4XhrA9PH6L5cjBXSX9sBIw0dM3iUi6hoGMNRpVaVlKC8ohEqlgu/QMPl4QKQ+gMk+ddqgfs3FCnkF34Dhw654fWt7O0y982YAgKObK2wc7NvUcffXDx+VFxSi6HwGAMMhJCtbGwSP0ufcSAnFSpJnIrXagsFrcDC3DiAi6iYGMGQUaT0Yv1bDSP7NAYyUI9NaXuo5AIBXWMgVrz3l9oWwc2rpqfEICmxTx605/6UkOxclOfn6Y616YELGjILG0hKlufkoaZ41paSWmUgtAczwq6YBAFL2HeDWAUREXcQAhoySm2y4oJ2juxsGeXlAp9Ui70xqm/oF59IBAN6hl59KbWljjdi7bwcAeQ8hj+CANvXcm/NfLmTnoDQnF4BhD0y4PJ1b+eEjoFUA0yoHRlqIT5qlRURExmMAQ0bJaZ5KLfXASL0vhekZaKita1O/IO08AFxxLZgJN/0Bjm6uKMnJw7HN+mEVj+CgNvWkBN6S7FyU5ul7YGwdHWDb3HMjJfCaQv4L0P5aMG7NAVdpbp4STSIi6he4Ei8ZRRpC8hocDI21NQKkBN7klHbrF5xN09cPDYaFhUW7652oNRpcdd8iAMDOjzbAytYGAOAR1LYHpnUA01hXj4oLJXByd4Obvw/K8lXyXk2tp3Mrqbqd1XilpOPSbAYwRERdxR4YMkpFUTEqS0qh1mjgMyS0Vf5L+wHMhewcNDU2wsbeHs4+Xu3WiZl/LZy9vXCxqBiHf/gFxc3Tij3b6YFxD9DnwFzI0ue3lObogwBXP18MGa9fvC43JdVgOreS5FlIzTtSqzUaOHt7AgBKmofAiIjIeAxgyGg5rdaDkXtgTrVN4AUAXZMWReczAQDeYaFtzqvUasx84G4AwO5PPkdTQwOKMvT13S/pgbG2t5N7Mkqy9X/8pWEYN39fk9g+4FLSarxSEq+zjzdUajUaautQWVKqYMuIiMwbAxgympTIGzl9Cpw83KHTapHbTgKvpFBK5G1nJlL0nJnwCApAdflFxH/9PQB9UKJtaoK1nS2cPD3kulLvS2VJKepragAAJbmtemBMLIEXAKpK9UGKFHgx/4WIqGcwgCGjST0wEVMnAtAn8Eo7MLcnXw5gDBN5LSws5AXr4jZ8iYbaWgD6XhtpaMgzuGUqtZz/0mroRcojGTJhLNz8fdHU2Ij0BNPZGFFaB8bGwR4aKyt5xlRJDgMYIqLuYABDRpO2FFCp1QDaLmB3qUJpJtIlU6kjp0+Bz5BQ1FVVY9/n3xicK2peAK/1WjDSHkhS/gvQ0gPj0RzoZCaelAMhU1BXWYWmxkYA+plIbnIAw/wXIqLuYABDRivNzUdNRYX8fXsL2LWWf1bfA+M1OBgWqpYfuasf+iMAYP+X36K2otLgNcWZzQFMSKseGP+WGUgtbTHsyTCV6dOtVTfnwdi7OsufoTQ3X8EWERGZPwYw1CW5yS05L1fqgSnNzUNDbR0sbazlHoghE8chaORwNNbVY/f6L9q8RpqJ1Hoqdesp1JKLhcXyjs8AcM4Etg+4VMtidq5w9fMBAHkRPiIi6hoGMNQlUh6MtqkJeWfOXbau0OlQ2LxvkTQTaVZz7suBb39AVUnbKc/FzTOXWk+llr6+0GqLAJ1Wi7KCAgBAXVU1sk6Z3uq2VWUti9nJvUjMgSEi6hYGMNQlUq9Lwdl0NNV3nMArKTjbMhMpODoKYeNjoG1swq51G9utL/XAuPr5QK3RIHzSOAzy8kBddTXyU9MM6krDMWmHj0LXpO3yZ+otUg+MR3CgvCs3h5CIiLqHK/FSlyTt2IUtKz9AavyhTtUvTGuZiRQUPQIAcOSnLSgvLGq3fkXxBdRVV8PG3h5uAX6Yeuet+tf8sLlNkm7GsRMInzgOidt/7+rH6VXSTKTAEfoduStLSk0q0ZiIyBwZ3QMzbdo0/Pjjj8jNzYUQAgsWLDA4/+qrr+L06dOoqqpCaWkpfv31V4wfP96gjouLCzZs2ICLFy+irKwMH374Iezt7Q3qREVFIS4uDrW1tcjKysLSpUu78PGot+i0WuxY/TGykjo3ZCNNpR46eQIiY6dAp9Xi97WfXvY1Ui/MsGmTMSx2MgBgz2dft6m3Y80n+O/Cu5Dw81ZjPkKfkZJ4A6OGA+AMJCKinmB0AGNvb4/ExEQ8/vjj7Z5PTU3FE088gaioKEydOhUZGRnYvn073N3d5TobN27E8OHDMXv2bFx//fWIjY3F6tWr5fOOjo7Yvn07MjMzERMTg6VLl+K1117DQw891IWPSKag8Jx+KrU0hJK47TeD6dDtudA8lXr24vuhUqmQHLcPF5qDmta0jY1thpVMibSYna2TIwAOHxER9RTR1SKEEAsWLLhsHUdHRyGEEDNnzhQAREREhBBCiJiYGLnONddcI7RarfDx8REAxOLFi0VJSYmwtLSU6yxbtkycPn26022T3tfR0bHLn4+lZ8s/D+wQy5PixfKkeOE9JPSK9a957EG5/vKkeBE+abzin6ErZfhV0ww+x9wnH1a8TSwsLCymWjr797tXk3gtLS3x8MMPo7y8HImJ+tVRJ02ahLKyMiQktOwWvGPHDuh0OkyYMEGuExcXh8bmBcAAYNu2bYiIiICzs3O772VlZQVHR0eDQqaloHkY6eTOOHmX6suRFrMDgIK0853OtzE1l24syV2oiYi6r1cCmHnz5qGyshJ1dXV4+umnMXv2bJSUlAAAvL29UVRkmLip1WpRWloKb29vuU5hYaFBHel7qc6lXnjhBVRUVMglN5d5BqZm/xffIfd0Kja/9V6n6he3CmD2bmyb+2IupA0dJSXcB4mIqNt6JYDZuXMnRo0ahcmTJ2Pr1q346quv4OHhceUXdsOyZcvg5OQkFz8/v159PzJews9bseLWe1GYntGp+kXnM1BZUorygkIk/LyldxvXi6QcGEkp14AhIuq2XplGXVNTg7S0NKSlpeHgwYNITU3FAw88gH//+98oKCiAp6enQX21Wg1XV1cUNC9IVlBQAC8vL4M60vdSnUs1NDSgoaGhFz4NKaWhtg5v3LgIEAINtXVKN6fL6qtr0NTQAI2VFbSNTR1OHScios7rk4XsVCoVrK2tAQDx8fFwcXHBmDFj5PMzZ86ESqXCwYMH5TqxsbHQaFriq9mzZyMlJQXl5eV90WQyEdVl5aguv6h0M7pNyoMpzcuH0OkUbg0Rkfnr0jTq6OhoREdHAwBCQkIQHR2NgIAA2NnZ4Z///CcmTJiAwMBAjBkzBmvXroWfnx++/lqfw5CSkoItW7ZgzZo1GDduHCZPnoxVq1bhiy++QH6+fnrpZ599hoaGBqxduxaRkZG49dZbsWTJEqxYsaIHPzpR35HyYC7dfJKIiLrOqOlN06dPF+1Zt26dsLa2Ft9++63IyckRdXV1Ijc3V3z//fdi7NixBtdwcXERGzduFBUVFaK8vFysXbtW2NvbG9SJiooScXFxora2VmRnZ4vnnnuuV6ZhsbD0RXnovTfF8qR4sfBl436OWVhYWAZa6ezfb6NzYHbv3g0LC4sOzy9cuPCK1ygrK8OiRYsuWycpKQmxsbHGNo/IJEkbThY1b1JJRETdw72QiPrAjg8+RvH5LBza9JPSTSEi6hcYwBD1gfKCQuz+9HOlm0FE1G/0ySwkIiIiop7EAIaIiIjMDgMYIiIiMjsMYIiIiMjsMIAhIiIis8MAhoiIiMwOAxgiIiIyOwxgiIiIyOwwgCEiIiKzwwCGiIiIzA4DGCIiIjI7/X4vJEdHR6WbQERERJ3U2b/b/TaAkW5Abm6uwi0hIiIiYzk6OqKysrLD8xYARN81p2/5+vpe9sNTz3F0dERubi78/Px4z/sQ77tp4HNQDu+9aejp5+Do6Ii8vLzL1um3PTAArvjhqedVVlbyl4gCeN9NA5+DcnjvTUNPPYfOXINJvERERGR2GMAQERGR2WEAQz2ivr4er732Gurr65VuyoDC+24a+ByUw3tvGpR4Dv06iZeIiIj6J/bAEBERkdlhAENERERmhwEMERERmR0GMERERGR2GMAQERGR2WEAQ1fk7OwMBwcHpZsx4Li5ucHDwwMqFf83VZJarQYAWFhYKNySgcfJyYm/exRmyj///M1Il/W///0Phw8fxk8//YRPP/0U3t7eSjdpQFi1ahWSkpKwfft2bNu2DaGhoUo3aUB666238MsvvwAAhOCKE33pzTffxO7du7F161Z8+umnDGQUYA4//4KF5dJib28vfvzxR7Fnzx4xbdo0cf/994s9e/aIhIQEMXz4cMXb15/LG2+8IRISEkRsbKy46667xO7du0ViYqKYOnWq4m0bKCUiIkL8/PPP4vz580Kr1Yo777xTABAWFhaKt62/lwkTJohjx46J/fv3i2uvvVa8/PLLIjk5WXz++ed8Bn1UzOjnX/EGsJhgmTJlijh58qQYOXKkfMzHx0fU19eLDz74QPj6+irexv5YbG1txcGDB8Urr7wiH7OxsREJCQliw4YNYvDgwYq3cSCUG2+8UaxZs0bMmDFDrFixQuTl5QmNRqN4u/p7UalU4t///rfYuHGjsLe3l4/fcsstIi0tTXh5eSnexoFQzOjnX/EGsJhgueGGG0RlZaXBsZEjR4r8/Hxx9uxZOSJn6dni6+sr8vLyxPXXXy8ACEtLSwFA3HzzzSIxMVE8+eSTirexPxfpX5guLi4iIiJCABBBQUEiJydH/Otf/zKow9I7Zc6cOWLatGkGx+655x5x8uRJYWdnp3j7+mO59Gfa1dXVXH7+FW8Ai8LlL3/5i1ixYoV4+OGH5T+Y48aNE2fOnBF//etf5XqrVq0Sy5cvF0lJSWL9+vWKt9vcy4033igcHR3bHN+/f7/YsGGDACDUarV8fNOmTeK7774T7u7uire9P5WOnoNUVCqVePzxx0VdXZ0ICAhQvL39qXTm3gMQzzzzjNizZ4/i7e2P5eWXXxYfffSReOmll4Srq2u7z8CEf/4VbwCLQiU8PFycPHlSJCYmis8//1yUlJSIXbt2iejoaGFhYSGefPJJodVqxd69e0V5eblITU0VDg4OYtGiRaKkpETx9ptrmT59ujh9+rTQarXioYceanP+vvvuE/X19SIsLEwAENbW1gKAmDVrlqipqeHwXR89h9bFzc1NHDp0SHz33XeKt7s/lM7ee+lf+5s2bRLLli1TvN39qfj7+4sjR46IxMREsXLlSpGXlycOHTokFi5c2KauCf/8K94AFoXK008/Lfbt2yf/K9/Ly0scO3ZMfPnllyI4OFgAELGxseLRRx8V1113nfy6Rx99VBw+fLjdaJ3l8iUiIkJ8/vnnYuXKleL9998XGRkZwtvb26BOcHCwiIuLE9u3bzc4HhYWJsrKysRVV12l+Ocw99KZ53BpmTdvntBqtfLwxuzZs8WQIUMU/yzmVoy99zY2NiIjI0PMnDnT4BpKfw5zL/fcc484evSocHJyEgCEnZ2d+P7770VcXJyc+9i6B9hEf/6Vv5EsfV/UarX48MMPxaZNmwyO33zzzSI+Pl4e77y0qFQqsWHDBrF27VrFP4M5Fk9PT3H//feLiIgI4eDgILKzs8Ubb7zRpt7cuXNFbW2tePbZZ+UhowcffFAcOnRIODg4KP45zL109jm0LjY2NuKzzz4T6enpIj4+XlRXV4tx48Yp/lnMrRh772fPni3S09OFjY2NGDZsmPj9999FdXU1E3q7WV555RVx8OBBgyBl2rRp4tdffxUbN25sU99Ef/6Vv5EsypT169eLrVu3CpVKJY81AxArV64UO3bsEKNGjZKPhYWFicGDB4v33ntPZGRkiBkzZijefnMtrZPg/vjHP4ra2lqD2V5SeeCBB0R+fr44deqU+Oqrr0Rtba148cUXFW9/fymdfQ5SCQ0NFdu2bRNarVasXr2agWQf3ftnnnlG7N+/X7z++uuisbFRbNiwgfe+B8q//vUvsW/fPuHj49Pmfh89elRcffXVBs/KRH/+FW8ASx8XKViZPn26aGpqEtHR0QJo6S6MjY0Vqamp4uabb5Zfs3jxYpGSkiLi4+PFiBEjFP8M/anEx8eL77//3uBfQlKZNGmSeOKJJ8SKFSsu+8eVpXefQ3h4uDh48KBISkoSkZGRire1v5XL3fvffvtNaLVasXv3bjF69GjF22ruRQpIhg4dKrRarViwYIHB+ZEjR4r4+Hjx3HPPycdM+Odf8Qaw9EKxsbHp8Jz0S8La2lrs3LmzTa4FAHH27Fnx0ksvyd+7uLiImJgYxT+XqZfO3PdLy9SpU0VTU5M8dVqlUnGmkYk8Bzc3NwFAODk5MYDs43sv/T9wxx13iPnz5yv+ufpLaf0MvvzyS5GQkCD/nEslPj5evP322/L3Dg4Opvrzr3gDWHqwaDQa8e6774rNmzeLTz75REyYMEE+J02RBvS/IDw9PUVsbKyor68XjzzyiByZOzs7i+PHj4vHHntM8c9jLqWz912tVgtPT882r1+/fr04fPiwmDlzptiyZYv429/+ZqoLR5l06Y3nYGVlpfjnMofSG/e+o4CHpeNn8Oc//1nccMMNbc61ThOwtLQUoaGhIiAgQFRXV4t//OMfcjKvWq0Wu3btEq+99prin6cTRfEGsPRQ8fLyEgkJCWLv3r3i0UcfFceOHRPHjh0z6AoEIJ588klRV1cn7rnnHgFAvPjii6KgoECsXr1aTJ06VSxfvlykpaWJoUOHKv6ZzKEYc99ra2vFvffe2+YaEydOFFqtVmi1WrFlyxbh7Oys+Ocyt8LnwHs/kMvcuXPFqVOnhFarFevXr2+T29L6GVRVVYmlS5cKQD85IDU1VWzZskXMnz9fLF++XOTm5oqxY8cq/pk6URRvAEsPlZtuukkkJSXJ64Q4OTmJV155RdTU1Mjjlp9//rnIyckRd999t8Frn3jiCXnPnWPHjplCdrnZFGPu+1133WXwWpVKJe6++25RX18v4uPjDRKnWfgczKXw3itb7OzsxOrVq8Vbb70lnn/+eXHo0CHxyCOPGNSxtLQU7777rigoKBCLFi0ySKSeN2+e+Pnnn8W+ffvEoUOHxPjx4xX/TJ0sijeApZtF+kF85JFHRE5OjsE5Ly8v8euvv4pdu3YJAGL8+PEGK1+2/iG2sLCQ139h6d37LhVbW1vx1FNPXXEhNRY+B1MsvPemUyZNmiTCw8MFAPH111+LH374QURFRRnUCQsL6/D3P4B2h/ZMvCjeAJYulIULF4qrr77aYAGoBx98UBw5cqTNrsUzZ84U9fX1Yvbs2QIwub0szKrwvptG4XPgvR/Ipb1n0LrMmjVLJCQkGGwK20+L4g1gMaLcddddoqCgQBw4cEAUFhaKPXv2iJtuukkAEKNGjRInT54Uzz33nEHSnKenp/j+++/FJ598onj7zbXwvptG4XPgvR/Ipb1nICXsXhocrlq1SuzcudNgBeN+WBRvAEsnilqtFk899ZQ4deqUuP/++4WlpaWYNGmS+Pjjj8Uvv/wiT118//33xYEDB8T06dMNXv/111+Ljz76SPHPYW6F9900Cp8D7/1ALld6Bq1nyrVe50WaDm1nZycsLCzkpf9bz0gy56ICmQV7e3t4eHjgk08+wbp169DY2Ij4+HgkJyfDyckJVlZWAIBXX30VlpaWePjhh+Hr6yu/3tbWFmVlZUo132zxvpsGPgfl8N4r70rPQKPRyHWFEACAM2fOYNOmTRg7dixefvllHD58GBs3boRKpYJOp1Pqo/Q4xaMolvaLtBuxVKKjo+XIWYqy77jjDnH06FGDbtuFCxeK3bt3i/Pnz4unn35afPLJJ6KgoEBMmTJF8c9kDoX33TQKnwPv/UAuXX0Grc/HxMSI+vp6odVqxfvvv9+mXj8oijeA5ZJyyy23iPT0dHH69Glx4MABcf/99xucbz3WuWHDBrl7tvUPp6+vr3j//ffFd999J37++Wc5O52F993UC58D7/1ALl19Bpcu+vfII48IrVYrtm7dKkJCQhT/XL1UFG8AS6sya9YskZ6eLh599FExZ84c8d///lfU19eLBx98UFhbWxvUtba2FsePHxeLFi3q8HqXvoaF992UC58D7/1ALj35DKKiosQtt9yi+Gfq5aJ4A1halZdfflkcPnzYYBn5VatWiUOHDrVZHtrHx0ekp6fLXY1hYWFi+fLlin8Gcyy876ZR+Bx47wdy4TMwrjCJ18RERkYiLS0NTU1NcmLWSy+9hLq6OixYsABeXl5y3VmzZiE7Oxv5+fl46623kJycjKCgIIOELuoc3nfTwOegHN575fEZGE/xKGogllmzZom3335bLFmyxGDZ/gcffFBcvHhRTtaSIvEHH3xQpKSkGExR/PLLL0VJSYkoLi4WSUlJ3C2a991sCp8D7/1ALnwGPVYUb8CAKt7e3uLHH38UBQUFYv369SIxMVGUlZXJP8RDhgwR2dnZ4q9//asADJPj8vLyxJIlSwSgX377xx9/FFlZWeLWW29V/HOZeuF9N43C58B7P5ALn0GPF8UbMGCKra2tWLdunfj8888N9hw6cOCAnEnu4OAgXnzxRVFdXS38/f0NXr9z506xevVq+fsxY8Yo/pnMofC+m0bhc+C9H8iFz6DnC3Ng+lBtbS3q6+vx8ccfIyMjA2q1GgCwefNmDBs2DABQVVWFzz77DEePHsVXX32FwMBAAEBAQAA8PT3x/fffy9c7evRon38Gc8T7bhr4HJTDe688PoPeoXgUNZBK6+xyaT7/hg0bxAcffGBQz9fXV6Smpor09HTx1VdfiZycHLFjxw5z3C3UJArvu2kUPgfe+4Fc+Ax6vCjegAFf9uzZI+655x4B6H+opR/s0NBQceutt4rly5fL51l43/tb4XPgvR/Ihc+gW0XxBgzoEhISIvLz8w3GM/vhcs8mV3jfTaPwOfDeD+TCZ9C9whwYhU2dOhVVVVXyeOYrr7yCt99+Gx4eHgq3rH/jfTcNfA7K4b1XHp9B9wysFW9M0Pjx4/Htt99i1qxZWL16Nezs7HD33XejuLhY6ab1a7zvpoHPQTm898rjM+g+xbuBBmqxtrYWqampQqvVitraWvHcc88p3qaBUHjfTaPwOfDeD+TCZ9AjRfEGDOiyfft28c4773DjM973AVn4HHjvB3LhM+hesWj+ghSiUqmg0+mUbsaAw/tuGvgclMN7rzw+g+5hAENERERmh7OQiIiIyOwwgCEiIiKzwwCGiIiIzA4DGCIiIjI7DGCIiIjI7DCAISIiIrPDAIaIiIjMDgMYIiIiMjsMYIiIiMjsMIAhIiIis8MAhoiIiMzO/wN0uJHKj/lZQwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import matplotlib.pyplot as plt\n", "\n", "plt.style.use('dark_background')\n", "\n", "asset = symbol('ACC')\n", "px = history(asset, ['close'], 100, '1d', dt='2023-06-30')\n", "px.close.plot()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's create a slightly better looking plot, using the plotly library" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "type": "scatter", "x": [ "2020-08-10T00:00:00+05:30", "2020-08-11T00:00:00+05:30", "2020-08-12T00:00:00+05:30", "2020-08-13T00:00:00+05:30", "2020-08-14T00:00:00+05:30", "2020-08-17T00:00:00+05:30", "2020-08-18T00:00:00+05:30", "2020-08-19T00:00:00+05:30", "2020-08-20T00:00:00+05:30", "2020-08-21T00:00:00+05:30", "2020-08-24T00:00:00+05:30", "2020-08-25T00:00:00+05:30", "2020-08-26T00:00:00+05:30", "2020-08-27T00:00:00+05:30", "2020-08-28T00:00:00+05:30", "2020-08-31T00:00:00+05:30", "2020-09-01T00:00:00+05:30", "2020-09-02T00:00:00+05:30", "2020-09-03T00:00:00+05:30", "2020-09-04T00:00:00+05:30", "2020-09-07T00:00:00+05:30", "2020-09-08T00:00:00+05:30", "2020-09-09T00:00:00+05:30", "2020-09-10T00:00:00+05:30", "2020-09-11T00:00:00+05:30", "2020-09-14T00:00:00+05:30", "2020-09-15T00:00:00+05:30", "2020-09-16T00:00:00+05:30", "2020-09-17T00:00:00+05:30", "2020-09-18T00:00:00+05:30", "2020-09-21T00:00:00+05:30", "2020-09-22T00:00:00+05:30", "2020-09-23T00:00:00+05:30", "2020-09-24T00:00:00+05:30", "2020-09-25T00:00:00+05:30", "2020-09-28T00:00:00+05:30", "2020-09-29T00:00:00+05:30", "2020-09-30T00:00:00+05:30", "2020-10-01T00:00:00+05:30", "2020-10-05T00:00:00+05:30", "2020-10-06T00:00:00+05:30", "2020-10-07T00:00:00+05:30", "2020-10-08T00:00:00+05:30", "2020-10-09T00:00:00+05:30", "2020-10-12T00:00:00+05:30", "2020-10-13T00:00:00+05:30", "2020-10-14T00:00:00+05:30", "2020-10-15T00:00:00+05:30", "2020-10-16T00:00:00+05:30", "2020-10-19T00:00:00+05:30", "2020-10-20T00:00:00+05:30", "2020-10-21T00:00:00+05:30", "2020-10-22T00:00:00+05:30", "2020-10-23T00:00:00+05:30", "2020-10-26T00:00:00+05:30", "2020-10-27T00:00:00+05:30", "2020-10-28T00:00:00+05:30", "2020-10-29T00:00:00+05:30", "2020-10-30T00:00:00+05:30", "2020-11-02T00:00:00+05:30", "2020-11-03T00:00:00+05:30", "2020-11-04T00:00:00+05:30", "2020-11-05T00:00:00+05:30", "2020-11-06T00:00:00+05:30", "2020-11-09T00:00:00+05:30", "2020-11-10T00:00:00+05:30", "2020-11-11T00:00:00+05:30", "2020-11-12T00:00:00+05:30", "2020-11-13T00:00:00+05:30", "2020-11-17T00:00:00+05:30", "2020-11-18T00:00:00+05:30", "2020-11-19T00:00:00+05:30", "2020-11-20T00:00:00+05:30", "2020-11-23T00:00:00+05:30", "2020-11-24T00:00:00+05:30", "2020-11-25T00:00:00+05:30", "2020-11-26T00:00:00+05:30", "2020-11-27T00:00:00+05:30", "2020-12-01T00:00:00+05:30", "2020-12-02T00:00:00+05:30", "2020-12-03T00:00:00+05:30", "2020-12-04T00:00:00+05:30", "2020-12-07T00:00:00+05:30", "2020-12-08T00:00:00+05:30", "2020-12-09T00:00:00+05:30", "2020-12-10T00:00:00+05:30", "2020-12-11T00:00:00+05:30", "2020-12-14T00:00:00+05:30", "2020-12-15T00:00:00+05:30", "2020-12-16T00:00:00+05:30", "2020-12-17T00:00:00+05:30", "2020-12-18T00:00:00+05:30", "2020-12-21T00:00:00+05:30", "2020-12-22T00:00:00+05:30", "2020-12-23T00:00:00+05:30", "2020-12-24T00:00:00+05:30", "2020-12-28T00:00:00+05:30", "2020-12-29T00:00:00+05:30", "2020-12-30T00:00:00+05:30", "2020-12-31T00:00:00+05:30" ], "y": [ 1389.47, 1405.15, 1399.4, 1383.42, 1373.59, 1377.76, 1422.23, 1421.98, 1408.53, 1407.83, 1410.32, 1392.95, 1390.27, 1391.95, 1380.74, 1308.09, 1331.61, 1349.28, 1327.94, 1300.15, 1329.73, 1298.17, 1309.08, 1343.42, 1307.1, 1360.69, 1374.59, 1382.53, 1399.4, 1415.03, 1358.71, 1340.35, 1346.6, 1290.23, 1326.15, 1365.16, 1368.04, 1387.98, 1404.71, 1409.32, 1437.11, 1468.38, 1504.9, 1491.8, 1505.84, 1511.55, 1539.83, 1507.08, 1550.75, 1555.71, 1565.64, 1606.03, 1618.74, 1589.95, 1564.4, 1667.32, 1614.77, 1644.54, 1637.49, 1653.72, 1649.75, 1663.4, 1686.87, 1647.07, 1656.35, 1651.29, 1662.65, 1663.8, 1659.43, 1682.26, 1674.76, 1664.39, 1677.79, 1706.07, 1684.74, 1652.43, 1684.54, 1673.07, 1735.35, 1715.01, 1702.25, 1653.47, 1647.47, 1672.33, 1646.53, 1623.7, 1600.92, 1605.83, 1623.2, 1620.72, 1626.28, 1637.54, 1561.02, 1553.23, 1568.86, 1599.88, 1612.29, 1604.84, 1638.59, 1607.32 ] } ], "layout": { "autosize": true, "template": { "data": { "bar": [ { "error_x": { "color": "#f2f5fa" }, "error_y": { "color": "#f2f5fa" }, "marker": { "line": { "color": "rgb(17,17,17)", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "rgb(17,17,17)", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#A2B1C6", "gridcolor": "#506784", "linecolor": "#506784", "minorgridcolor": "#506784", "startlinecolor": "#A2B1C6" }, "baxis": { "endlinecolor": "#A2B1C6", "gridcolor": "#506784", "linecolor": "#506784", "minorgridcolor": "#506784", "startlinecolor": "#A2B1C6" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "marker": { "line": { "color": "#283442" } }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "line": { "color": "#283442" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#506784" }, "line": { "color": "rgb(17,17,17)" } }, "header": { "fill": { "color": "#2a3f5f" }, "line": { "color": "rgb(17,17,17)" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#f2f5fa", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#f2f5fa" }, "geo": { "bgcolor": "rgb(17,17,17)", "lakecolor": "rgb(17,17,17)", "landcolor": "rgb(17,17,17)", "showlakes": true, "showland": true, "subunitcolor": "#506784" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "dark" }, "paper_bgcolor": "rgb(17,17,17)", "plot_bgcolor": "rgb(17,17,17)", "polar": { "angularaxis": { "gridcolor": "#506784", "linecolor": "#506784", "ticks": "" }, "bgcolor": "rgb(17,17,17)", "radialaxis": { "gridcolor": "#506784", "linecolor": "#506784", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "rgb(17,17,17)", "gridcolor": "#506784", "gridwidth": 2, "linecolor": "#506784", "showbackground": true, "ticks": "", "zerolinecolor": "#C8D4E3" }, "yaxis": { "backgroundcolor": "rgb(17,17,17)", "gridcolor": "#506784", "gridwidth": 2, "linecolor": "#506784", "showbackground": true, "ticks": "", "zerolinecolor": "#C8D4E3" }, "zaxis": { "backgroundcolor": "rgb(17,17,17)", "gridcolor": "#506784", "gridwidth": 2, "linecolor": "#506784", "showbackground": true, "ticks": "", "zerolinecolor": "#C8D4E3" } }, "shapedefaults": { "line": { "color": "#f2f5fa" } }, "sliderdefaults": { "bgcolor": "#C8D4E3", "bordercolor": "rgb(17,17,17)", "borderwidth": 1, "tickwidth": 0 }, "ternary": { "aaxis": { "gridcolor": "#506784", "linecolor": "#506784", "ticks": "" }, "baxis": { "gridcolor": "#506784", "linecolor": "#506784", "ticks": "" }, "bgcolor": "rgb(17,17,17)", "caxis": { "gridcolor": "#506784", "linecolor": "#506784", "ticks": "" } }, "title": { "x": 0.05 }, "updatemenudefaults": { "bgcolor": "#506784", "borderwidth": 0 }, "xaxis": { "automargin": true, "gridcolor": "#283442", "linecolor": "#506784", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "#283442", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "#283442", "linecolor": "#506784", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "#283442", "zerolinewidth": 2 } } }, "xaxis": { "autorange": true, "range": [ "2020-08-10", "2020-12-31" ], "type": "date" }, "yaxis": { "autorange": true, "range": [ 1265.5011111111112, 1760.0788888888887 ], "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAA5UAAAFoCAYAAADHO989AAAAAXNSR0IArs4c6QAAIABJREFUeF7snQdYntX5/7/svQkBkhACZIdMssneW2PiqLW12qqttVWr1daqVevPba222tra2lpnYmI0e0+yyA4hgwwg7BH2Hv/rHP5QIIybl/m8fJ/rylUD91mf+5Dyec95zrHw8PCoBB8SIAESIAESIAESIAESIAESIAESMIGABaXSBGosQgIkQAIkQAIkQAIkQAIkQAIkoAlQKjkRSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKjkHSIAESIAESIAESIAESIAESIAETCZAqTQZHQuSAAmQAAmQAAmQAAmQAAmQAAlQKg08Bzz8Q5CXmYTSonwDj6L9u+7q0xfF+dkozs9q/8YM3IKThx8qKytQkJVi4FG0f9cdXL1gZeuAvPTr7d+YgVuwdXSFo6s3spKvGHgU7d91Kxt7uPXsi8zrF9q/MQO3YGFpBe+AIUi7dsbAo+iYrvcIDEV6bJT+95xP4wQ8ew9CdspVlJcWE1MTBNz9gpGflYLSwjxyIoEmCVAqDTxBKJWy5FEqZZwolTJOlEoZJ0qljBOlUsaJUinjpKIolTJWlEoZJ0qljBOjAEqlgWcBpVKWPEqljBOlUsaJUinjRKmUcaJUyjhRKmWcKJVyTpRKGStKpYwToyiVhp4DlEpZ+iiVMk6UShknSqWME6VSxolSKeNEqZRxolTKOVEqZawolTJOjKJUGnoOUCpl6aNUyjhRKmWcKJUyTpRKGSdKpYwTpVLGiVIp50SplLGiVMo4MYpSaeg5QKmUpY9SKeNEqZRxolTKOFEqZZwolTJOlEoZJ0qlnBOlUsaKUinjxChKpaHnAKVSlj5KpYwTpVLGiVIp40SplHGiVMo4USplnCiVck6UShkrSqWME6MolYaeA5RKWfoolTJOlEoZJ0qljBOlUsaJUinjRKmUcTIHqfTwGoEbGafkAzYxklIpA0eplHFiFKXS0HOAUilLH6VSxolSKeNEqZRxolTKOFEqZZwolTJOxpZKC4wN/wA9e83EtnXhKC5KlQ/ahEhKpQwapVLGiVGUSkPPAUqlLH2UShknSqWME6VSxolSKeNEqZRxolTKOBlZKkeOexVBA3+kB5qatA/7t6+QD9qESEqlDBqlUsaJUZRKQ88BSqUsfZRKGSdKpYwTpVLGiVIp40SplHGiVMo4GVUqh4x8GoNCH6szyLPHX8bFqHflA29hJKVSBoxSKePEKEqloecApVKWPkqljBOlUsaJUinjRKmUcaJUyjhRKmWcjCiVIYMfwPCwl/QA92+/AyXFGZixcCsqKyuwZ/Ni3Mg4IR98CyIplTJYlEoZJ0ZRKg09ByiVsvRRKmWcKJUyTpRKGSdKpYwTpVLGiVIp42Q0qewbfCfGTPqTFsjDe3+CxLj1eqADhz2GoaOeRmF+IrZ9NwVlpXlyAMJISqUMFKVSxolRlEpDzwFKpSx9lEoZJ0qljBOlUsaJUinjRKmUcaJUyjgZSSr9AxZj/NS/w8LCEscifonYy1/UDFJ9bdr8DfD0Ho2EuA04vOc+OQBhJKVSBopSKePEKEqloecApVKWPkqljBOlUsaJUinjRKmUcaJUyjhRKmWcjCKVPn7TMWnmp7C0tMbpyGcRE/3hTQN0cOyF2Uv3wsbGGcciHkXs5c/lEASRlEoBJACUShknRlEqDT0HKJWy9FEqZZwolTJOlEoZJ0qljBOlUsaJUinjZASp9PQOw5S5X8PKyh7nz7yDcydfaXRwvfsuw7ipH6K8rBCb145FcVGaHEQzkZRKGUpKpYwToyiVhp4DlEpZ+iiVMk6UShknSqWME6VSxolSKeNEqZRx6upS6e4Ziqlz18HaxglXLnyMk0eeanZgYZP/jICglcjPjcWBHXchL/dys2UkAZRKCSWuVMooMUoRsPDw8Kg0FxS3Ll+B555/EZ988jHefvN1PSz1tZdefhUuLi51hpmbm4tnn3kaa9esvinmi88/xVNPPl4T/+nnqxA+Zar+e1JSIh5/9BFEHNjf6dgolbIUUCplnCiVMk6UShknSqWME6VSxolSKePUlaXS2SUY0+avh529J+KvrsXR/T8F0PyvoFZWdhg75W/w77MAJcVZOLDzLtxIPy4H0kgkpVKGkCuVMk6MMhOpnDQ5HG+/8x78/PxRUlKCD95/r0YqG0qykkQfHx/MmTUN1WUvx8Tg7rtW4vEnfo377n8A//zoQ13Ha2+8jUWLl9YI6LYde3SVqmxnP5RKWQYolTJOlEoZJ0qljBOlUsaJUinjRKmUcWpMKvv0W4HionSkJu2WV9SGkY5OfTBt/ndwcPRDYvwmHNp9b4trHx72B4QM/okup4Q0/uqaFtdRuwClUoaPUinjxCgzkcrqRDa0Ulk/yfVjlETec8+9ePGF5/SqZX3JVBKZmpqqhVM99SWzMycRpVJGn1Ip40SplHGiVMo4USplnCiVMk6UShmn+lJpZ++DMZP+CN9es1FUmIKt6yajrDRXXlkbRNrZ98C0ed/B2bUf0pIjsG/brSbXGjL4pxge9ntdPvrUG4g+/abJdVEqZegolTJOjOqGUll7lbIxSaxejXz+uWf0Cmj1KqaKr7+S2ZmTiFIpo0+plHGiVMo4USplnCiVMk6UShknSqWMU22pDAi+A6FjXoCtrVtN4WsxX+D4wV/KK2tlpI2tm36H0s1jMDLTj2PftttQXlbQqlr9A5ZgwrR/6DouRv0ZZ4+/ZFJ9lEoZNkqljBOjuplUNrSSqVYep02fUec9yfpSuWf3rpp3LOtLpRKWznpsHVxQVlKIivKyzuqCIdq1sXdCRVkpystKDNHfzuqkta2Dfr+lrKSos7pgiHatbeygfsEtLS6AhSF63DmdtLS2gZWNHUoL2/7S8o4eUXlZKaysbdulWQtLS6h/o0oKOnb1qF0G056VWljAztEVxfnZ7dlKI3U3/95fJ3Sq0SZdPQYgKOjn8PKeoGMy0g8i8fo6hI58Vf/91PHHkJ52oN27bGXlgFFhf4Gb+zDk5cbg2JGHUFaW0ybtunuMxJhxH6K0NBd7d84yqU71wVdpUT4qK8qbLG+s7JuEoslC3el3zZzU2LYH2I1qNPuDemrnsqH3IRvaztqSlUp7Z49Omy5OHj1RlJeF8tLiTuuDERp2cPXWAlBW3LpPR40w1tb00c7JHZWVlSgp6Ixf2lrT844ta+PgDEtrWxTnZgqOmOjYvnWl1tSHFHYOLsjPTu1K3TKpL5UVFbCwbJ+PECytbOHo5o28zEST+tZdCllYWMLFuzdy0uI6Ycjtk/u2H4gF+va7C4OHPQkraweUFN9A1JlXkBj/rW4qKOQ+DA79NYqLMrB72zyUlbXfBz4WljYYP+kjePUYh/z8eETsuRMlxRltOuTwGWvh5j4YB/feg8yMoy2u29nTHwXZqc1+MG+U7LcYgLCAo7sPigtyUN4NPnAuyrshpMKwhgh0G6lsbNsq36k0/x8Mbn+V5ZjbX2WcuP1VxonbX2WcuP1VxonbX5vm5OQSiLGT34dnjzE6MP7qNzgd+VstkP97LPRhOV49xupDbqpOX237x8LCChOmfwy/3nNRWJCM3ZsWorAgoc0bGjLiKQwa/jguRr2Ps8dfaHH93P4qQ8btrzJOjOpG218bO7WVp7+a/48BpVKWY0qljBOlUsaJUinjRKmUcaJUNsbJAiGDH8TQUb+BlZW9Pown5vIfcenkv1FZWXFTIQen3pi7LALqmo5Du3+ExPiNsgSIoywwNvwD9Ol3K4qLMrFn8+I2u1eyfhc8vcdg+oKNyMm+hO3fhot7WB1IqZQho1TKODHKTKSy9pUi1UmtfZ9kcye21r/LkvdUmtePBqVSlk9KpYwTpVLGiVIp40SplHGiVN7Mydk1GGFqddJ7pH514erFj3H2xB/g0asf0mOjGpRKVUu/Afdi1PjX9PbYresm6v9tq2fk+NcRNOCHKC3Nw94tS5F9I6qtqm6gHgssWhkFO3svbFk7Dvl5LXsfjlIpSw2lUsaJUWYild01kTz9VZZ5SqWME6VSxolSKeNEqZRx6i5SOWrCW/DtNQtXLnyMC2ffkcGpFUWprItsYOhjGDryaf3F3JzLOB7xKDLSjui/9wgMbVIqVUz47K/g4zcNCbHf4fDeHzebj0kzP8WpI79tUtwGj3gSg4c/gfLyIuzffgcyUg81W29rA8ZMehd9g+/A6cjnEBP9txZVR6mU4aJUyjgxilJp6DlAqZSlj1Ip40SplHGiVMo4USplnLqDVLp7jcTMhVs0ELUlcsOqwTI4ZiKVDo69ENj/blhbO+Ni1LsoLkpv8firC7h5DMWYiX+Cu1eo/tL5M3/EuZNVp7pWPxKptHf0w5wl+2Bj64LdmxYhMz2y0T71DrwF46b8DSUl2Ti67yGkJO68KTZ40I8xYuzL+usHdtzVYIzJg26ioH/AYkyY9hFSk/Zi//aq+8SlD6VSRopSKePEKEqloecApVKWPkqljBOlUsaJUinjRKmUceoOUjlz0Q64ew6rAXJw1w+RdH2zDND/jzLiSmWvvksRGPI99PSfUTNWtYp36dwHuBj1F5SVtuwamSEjf4NBoY/qum5knMKxiF8iJyv6Jo4SqVSFQgY9iOFjX0RC3AYc3nNfo/mYuXB7jcSqoHOnXsf502/VxPcNvhNjJv1J//3Qnh8jMe67FuW2NcHWNs5YeudlXcW3X4S0iCmlUkaeUinjxChKpaHnAKVSlj5KpYwTpVLGiVIp40SplHEyd6kMGngfRo57BUWFaYi9/AUGDnsECXHrcXjP/TJABpNKdQprYMj3ERhyJ+zse+jel5cX4/rVNbCx84B/n/n6ayXFWVouL0X/FRXlTd8N7ODoD7X91M1jiC575tgLuHTu/Ub5SaXS2toJC247pVcrt66bhLycKjmr/fTwnYIpc1br/EWfeh2jJryhv61ENPLAz+HrPxPjp32kv3Ys4lHEXv68RXlti+Dw2avg4zcVh/f+BAmxVdenSB5KpYQSQKmUcWIUpdLQc4BSKUsfpVLGiVIp40SplHGiVMo4mbNU2tl7Y+6yg7CxdcWRfQ8iI/UIFtx2QoP57ssBKC2R34nb1VcqewfeisD+34eP7/9OIc3KjNKH58RfW4Oy0qo7IdWJpUNH/Q49fCfpvytZO3n4142ewurqPki//2jv0BOZ6SdxdP+DyM+91uTkkkqlqmTY6OcwYOjDuHLhXzh5pOodzdrP5Flf6JXWqBP/hwtn/wQ3z2GYMO1fcHIOqBNnyjuNsp+Q5qOqV1zjrqzSoit9KJUyUpRKGSdGUSoNPQcolbL0USplnCiVMk6UShknSqWMkzlL5eiJf9IrdimJu3Bgx50aSPWq0vFDT+DapU9kkAB0Ral0dRuIwAE/QN+g27U4q6esrADxV7/GtUuf4kZGlUA39Pj4zcCQkU/rk1vVcy3mC5yOfKZGPtXXeviGY8K0j/VKYmrSPhzac2+d7zdWd0ukUr1bufC2k/pwnU1fj0JJcWZNta7ugzF7yW49pk1fj6z5EMDG1l2/Y9nTf7qOjT79ll7F7KzH2SUIc2852OL3daVS2Tf4Ljg49ULc5S9RkB/fWcPstHYplZ2G3nANW3h4eFQartfssCZAqZRNBEqljBOlUsaJUinjRKmUcTJXqfTqMQ7T5n+nt36qrZWF+dc1kICg2xE2+T29arlnyxIZpC4klVZWDujTb7lelfT0Hl3T/xvpJ3D10ieIv7oG5eWF4nGpbZtjw9/XW2Xzc2NxdP/P9KE5qg1136N64q58jcgDPxPX2RKpVJWqa0kCgm5D9Kk3EH36zZp2xkx6D32Db9dbdM9EPn9T+0NHPQP1TuOpI78R9629AtWKuLNrEHZvXozMtKOiZiRS6eE1CjMWVr3/mxC7Hof3tmzbtqgjXTyIUtnFE9SFukep7ELJaGlXKJUyYpRKGSdKpYwTpVLGiVIp4ySVSmsbF33JfWVFqd6G2NWfWYt3w81j8E3v/6n3+Bbdfg5WVvYtuluws1cqlVyoE1z79LsN1taOGn9pSS7ir67G5Qv/RG72RZNTYmPrpg+68e+zQNehViV9/Kbo/1bvTqp3KFvytFQq1ZbWWYt2oLgoQ69WVlQUw97BFwtXnNLNbvp6NAoLElrShQ6PDQ17Af0HP4QLZ99F1ImqU2ibeyRSOX3BlprVZFXf3q23Ij0lormqzer7lEqzSme7DoZS2a5427dySqWML6VSxolSKeNEqZRxolTKOEml0sN7NGYs2KQr3frNROTlXpE10AlRA4c9iqGjfoMbGaexa+Ocm3oQNvnPCAhaqVfF1OqY5GmtVLp7hqJP0ArY2XlDveupVgbtHbz1u4qpyfuRFL8ZiXEbUFiQWNMdGxtXLZH9BvxQC3L1k55yCNdiPkXcla8kXRfHqHZGjf/fNtKTh5/GlYv/EpevDmypVKpyNduSD/4K12L+i9Axz6P/kJ8h9vKXOBbxixb3oaMLqK3CU+Z8jeys89jx3TRR881Jpdr2OmbSOyjIv645DB7+K6j3ZHdumCmq31yCKJXmksn2Hwelsv0Zt1sLlEoZWkqljBOlUsaJUinjRKmUcZJKpZIbtU1SPSeP/AZXLvxT1kAHRw0a/isMGfFr3equjXP11Rf1nx6+UzFlzirk5VzF1nUTRD1sjVTWl7WmGlTbWJMTdsDROUBv/ax+1GmtSizUFte8nEuiPpsS5OwaDCXdF6P+rCXXlMcUqezpPwuTZ32mT4DdtWkBFiw/AWsbJ2z/dipysi+Y0o0OL7Pkjhj9/unmNWGidx+bkkr1gcKcZRGwd+iBQ7t/pOfE3Fsi4OjUG8cPPq4/VOguD6Wyu2S69eOkVLaeYafVQKmUoadUyjhRKmWcKJUyTpRKGSepVA4e8SQGD39CV5oUvwUHd/9A1kAHRlWfJKoOfVF3UaYm7W609QW3nYSDox92b1qk3yFs7mlMKtUKZE72pQav5bC0stcrf32D79DVq8Nw1Pt2xUVpdQ68UYew+AcsRE//mbCysqvTFbWKee3if3A9dl1zXewy3zdFKlXn5yzdBxe3ATXbb5MTtiNi591dZlzNdWT81L9D3Q166shvcflC1TUnTT1NSeXwsJcQMvgBpCbtxf7tK3U1/gFLMGHaP/SJvVu/GY+ysvzmmjCL71MqzSKNHTIISmWHYG6fRiiVMq6UShknSqWME6VSxolSKeMklcrqw1RUrerwm3Wf1b3SQdZa66LUaaB5uVcbFLhRE95Ev/73oKw0X5/0mpF2pMnGho1+FgOG/hxXLv5bX6nR3KOk0i94MiqLnODVYyzUO46ePcZoCSwvK0RC3Ea9HbVaZNWJoBOmfwxX94G6anXVhLpyornHt/dc9O67DIUFSXobaHPXdzRXX2d831SprN7uWd3nfVuXIy3lQGcMwaQ21YcHYya9i5TE3Tiwo+qDhKaexqRSneo7e+leXXTrN5OQl/u/+zunzl0H754TcDHqLzh7/MXmmjCL71MqzSKNHTIISmWHYG6fRiiVMq6UShknSqWME6VSxolSKeMklcrpCzbVOW1037bbkJa8X9ZIK6LUgS3q/ce+IXfBxTVY15SWHIHU5L1ITdqDG+nH9Sml6rRStUVU/TJ/I+Nksy2qFTG1MlZSko31Xw5oMN6750R9r6OH9yh4eo2Gg5N/s/UWFaYjI+0wegUs0rH5eXE4tOdHyM4822xZcwkwVSrV+BeuOKu3fDb2PmxXZqTelV20MqqmiyXFN/SHAuqDEPUOstpuna//+6q+OqUxqZwyZw16+E7WW5DPHn+pzpDVyvjMRdv117Z8M96QHzq0NIeUypYS677xlEoD555SKUsepVLGiVIp40SplHGiVMo4SaVy8e0XYGvnjvira9Gn3624cPY9RJ34g6yRFkZZWtrp7aCBIXfBx08S6Q1fAAAgAElEQVR26ImSuf3blrfo/bsZC7fCw2sEDu+5H7nZl+DhPRJunsPh6R1W58TN6u4XF6cjIzVSi2xm+nH9v2oLonr/sU/gcvQOXAY3jyE1o1UrVkf2PYjSkqwWEjB2eGukUq3UunsOR2riLmSmHzMciLDJf9FzVolxU486ubew8LreOp174yLy82KRl3MF6iTcUeNfQ2FBMraum4jysoKbqhk98W0EhtyNhLgNOLznPsMxammHKZUtJdZ94ymVBs49pVKWPEqljBOlUsaJUinjRKmUcZJIpbpyYskdVVdW7Nu2Uh9yk5V5Fjs3zGq0EVs7zzoX2Ut6o1YG1T2SvQNvqbk2Q5VLiFuPuMurkHR9M6ysHeHtM1Gv5PTwnQIPr+EozE/Evu0r9CEvLXnUO2vq3bWGHvVL/42ME1pslEBmZZyES8+eSLt2pskm1Aqo6n9lZQXO17pzsSX9Mnpsa6TS6GOv7r96n9bZJVB/4KD+18GxN5xd+8HJuS+cnANgZe3Q5FDVhxHXr33TYIw6OXjeLYerDjL6bjpysqLNBVuD46BUmnV623RwlMo2xdmxlVEqZbwplTJOlEoZJ0qljBOlUsZJIpXuXiMxc+GWmusSlt+ToivfsCoUxUWpNzXUK2CxPkH0ysX/4GLUe/pgmsYe9Ut2n6CVeour+uW7+slIi0Ts5S+QcG0dSktzGi2vhNfS0rbJNhorXHu7YkbqEb1tNiPtKLJvRN0kqK05/VWWCfOJolQ2n0slhn5BU1FZYg0Hh15aNB2c+8DZua++QmTv1luarKT/kIcROuY55ObEYNu6yc03aOAISqWBk9fBXadUdjDwtmyOUimjSamUcaJUyjhRKmWcKJUyThKp7B14K8ZN+SsS4zfh0O57MXnW5/qk0sgDjzR4V+Ksxbvr3KsYE/13LZdFhVUyam3tpO9fVH/UoSPVj/r+tZjP9Kpk7cNJZCMxLcrZtb/oig5KpZwvpVLGqrl7KpurZfaSvfogqHMnX8P5M283F27Y71MqDZu6Du84pbLDkbddg5RKGUtKpYwTpVLGiVIp40SplHGSSKW6SkRdKXLp3Ps4c+wFhAx+CMPDXkD81TU4uv+ndRry6z0PE2f8B+qQEnUgiaf36JrvJ8R+h0pUonffpTVfqz45Nfby50hL3ifrdCdEUSrl0CmVMlatlUp1AvGMhZt1Y0Y7tEe9t9x/yE9xeO/9zcIyN6lUuyvcPYahqCgNudlVrxXwaRsClMq24dgptVAqZdgplTJOlEoZJ0qljBOlUsZJIpVjJr2HvsG34/ihJ3Dt0if6LkF1cqo6HGfj6qF1Gpq+YIs+5ObE4V/j6sV/64NrBoU+pu/vq/2o+/diL3+p35esKC+SdbYToyiVcviUShmr1kqlamV42B8QMvgn+kTkfdtulTXcyVH9BtyrDyNSjzokS/0b0NRjblI5dNRvMXDYL1FclIFNa0Yb4t+/Tp4y4uYplWJUXS+QUinLCaVSxolSKeNEqZRxolTKOEmkctr89fpuxn3bVtSsJi5ccRr2Dj2xa+Nc3Mg4pRvz8ZuB8Nlf6INzNq0ZVacDzq4h+l5IdcWC2uLa0LuYsh53ThSlUs6dUilj1RZSqbaSz1l2AA6OfjgW8Uv9HnJXfqrvk63uo7pyZ8vasd1GKtUBTgtvO6VP0lbPicNP4erFj7tyygzVN0qlodJVt7OUSlnyKJUyTpRKGSdKpYwTpVLGSSKVi1aeg529FzZ9PQaFBdd1xeqSd3XZe9SJV3Hh7B/116bN3wCvHmE4efg3uHLxn7IOGCSKUilPFKVSxqotpFK15Nd7PibO+DdKS3L0Nlh1B2ZXe9ShWBOn/weePcbc1LUzx17EpXN/abTL5rRS2a//DzBqwhs1Y1VSvfWb8fq0aD6tJ0CpbD3DTquBUilDT6mUcaJUyjhRKmWcKJUyTs1JpbWNC5beGaMrW/NJz5pKqw/vSU85hL1bl+nrPabMWa0P49m4eriscQNFUSrlyaJUyli1lVSq1sZP/Qd69V2CuCtfI/LAz2Qd6KAodffo6Alv6p0NBXnxOLz3x/qkZXWfZ/jsr1BWmo8t34zV20EbesxJKtVrA+r1gcgDP8fQUb+Dg6MvDu/5MRLivuugbJh3M5RKA+eXUilLHqVSxolSKeNEqZRxolTKODUnleoi+pmLtukDJbZ9O6WmUrVyqVYw1fPtF8F6FULdHXk68lnERH8oa9xAUZRKebIolTJWbSmVdvY+mHvLQdjYOOu7ZNOS98o6YWKU+rDJ3t6n0VOaHRx7oW/InQjot1Lfz6mehLgNOB7xaJ0rgibO+AR+vefiysV/4+ThX5u1VPr4TUX47FU176JX35N7I+M0dm2cY2ImWKw2AUqlgecDpVKWPEqljBOlUsaJUinj1J2kUr1XVVaWLwNTL6o5qezddxnGTf0QifGbcWj3D+uUnrFwKzy8RuBi1F8wYOjD+q7ITWvCzPLgCUqlfHpRKmWs2lIqVYuB/e/RK4JqNXDrt+Ht+nNYfa2Qajcr8yxyss7rPyUlWfp0ZyVQ1Y+6S/PSub/qQ77qP+pd67nLDugvqw+tGjoN1VxWKqsFOvrUG4g+/SbU+5ULlp+Anb0n9m27DWnJ+2UTh1GNEqBUGnhyUCplyaNUyjhRKmWcKJUyTt1FKtXpqpNmfoY9W5aiIC9OBqdWVHNSOTD0MQwd+TQuRf8VZyKfr1N/9SmG1V88Hfl7xER/0OI+GKEApVKeJUqljFVbS6VqtfpQrQtn30PUiT/IOtLCqOFhL0GtsjX3xF7+CuqqoPSUiCZDh499GSGDfozUpD3Yv/32m2LNQSqdXPph3i2H9Ng2rAqtOahMXdWkrmxKSdyJAzvuag4pv98MAUqlgacIpVKWPEqljBOlUsaJUinj1B2ksodvuN52am3jhNiYz3Hs4KMyOC2QytET/4TAkDsbPKWwR8/JmDJ3ja5NXS+yee2Ydl0dafHg2rAApVIOk1IpY9UeUll93Y/qwY71M5B9o2qLels9fYO/hzGTqg7m2rN5CTLSjuhrg1zd1Z9B+o+6b1b9e1RamiNq1tbOA3NvOQxbWzdE7LwbyQnb65QzB6msvvol/upaHN3/UM341NjVaqWVtQO2fzsVOdkXRMwY1DABSqWBZwalUpY8SqWME6VSxolSKeNk7lLZp99yjA2vuyq4ee3YFq9WNrdSOXXuOnj3nNDoe1pL77oKa2tHNHeCoyxrXTeKUinPDaVSxqo9pFK1PGj4Exgy4kl9GM6ujfNknRFEqQ+xpsz5Wkce3f9TxF+t+kCpLZ7gQT/BiLF/gNoqu23dZENKpRJE9a5p/R0j1jbOWHjbaf3h3+5NC5GZfqzO+IaHvYiQwQ8i7spqRB54uC1wdts6zEoqb12+As89/yI++eRjvP3m63WS+vgTv8ZPf/YIbG1tUVJSgg/ef68mRpV76eVX4eLiost88fmneOrJx2vKf/r5KoRPqdqfnpSUiMcffQQRBzp/7zWlUvZzS6mUcaJUyjhRKmWczFkq+w95GKFjntMgrsV8CnUoRk//6SatVjYnlQtXnIG9gw82rwlDQX78TfDVO5XW1s7ITD+O8vJCWXIMGEWplCeNUilj1V5SqVqfuywCzq7BOHX0GVw+/w9Zh5qIUnVNX7BJryaq9wHVe4Ft/cxddkgf6nPyyG9w5cL/riTqqiuVXj3GwcNrlL4mxcN7FJycAzQSJdvRp96sOcSo+kCerIwz2Llx9k3Y7B18sXBF1V2/tU/Ybmu+3aE+s5DKSZPD8fY778HPz/8mYVRJVEJ53/0P4J8ffXiTbFaXvRwTg7vvWnlT7GtvvI1Fi5fi2Weexto1q7Ftxx49L+bMmtbp84NSKUsBpVLGiVIp40SplHEyV6kcMfb/EDzofg3hzLEXcOnc+3DzHIZZi3borzUmf41Ra0oq1QFAS++6wl92AFAqZT93KopSKWPVnlLp5TMe0+Z9i/KyQmxdNwmFBYmyTjUQZWPrpoXSxTUY9bdvmlxpAwX9es/DxBn/QUlJNrasHYvSkmwd1RWkUm0rVh+geXiPhqfXKC2RzT3Xr63D+dNvYcL0f2tZPhbxC8Re/rLBYqMnvoPAkLsolc1Bbeb7ZiGV1WNsaKWyWhr37N5VZ/WxuowSznvuuRcvvvCclsb6kqkkMjU1VQuneupLZiv5t6o4pVKGj1Ip40SplHGiVMo4maNUjprwFvr1/77+RfHIvgeRdH1LDYwJ0/4F/4CFuBbzGY4ffEwGCUBTUqnelZq1eBdysy9h27fh4jrNMZBSKc8qpVLGqj2lUvVg1Pg30G/AD5AUvwUHd/+g2U6p00gdnfrA0ckPDk69oFbQLCys9C4Irx5jkZF2FHs2L262ntYEhM9eDR+/KYiJ/htOR1btxuhoqVRbWD29w+DlEwZP7zH6v21sq3YS1n4Ujxvpx5GRFonszLPIy72iP+AbMuJp+PWue0WIuoNzw6ohjaJxdu2PMRPfxp4tS1qDr9uXNXuprL+1VWW89hbWhiSxejXy+eee0Sug1auYqmxTq54dPZsolTLilEoZJ0qljBOlUsbJ3KTS1s4Ti2+P1oPfuWE2sjLP1AHh6j4Ys5fs1l9rybuVTUmlf8BiTJj2kfiXUllmjBlFqZTnjVIpY9XeUqlWGOcs3Qd7h56IPPBzZGWchr2jr94u7+jkDwf1x9FP/139r42ta6Mdz8u9hj2bF0LJUXs+tf8d2/rNRC1q7S2VVVtYw+DhNRLunqFwdR940xCzs85rflmZp7REZmWcbBKDktGho57Rd/eq5/yZd3Du5CvtiY51qx0lHh4eleZCoqGVysZWInNzcvQWViWV06bPqPOeZH2prL3KWV8qbR2cOw2fi1cvFOZmoKykqNP6YISGHd17orQoH6VFeUbobqf10d7FC5WVFSjOu9FpfTBCw3aOrrC0sUNhdpoRuttpfbS2c4S9kxvyMpM6rQ9t1nBFJfqG3IPQ0S8gNXkvjuz/UYNVj5nwF/j1no+4q1/h9LHfiJq3tLaFk0dP5Kbd/L5k8MCHMDj0SVy5+E+cO/2yqD5zDbKwsIRbz0BkJVdtB+bTOAF33yBkp1xFZaXZ/HrXLul26RGA/BtJqCgrbZf6VaV+vRZgzMQ/N1t/WWm+3iJbWJCAwsJkFBZcR2FBEgoLE1GYn6C/3lFP6OiX0TfoTiQnbkdkxINw9vJHUd4NlBW33Tvb/Qf9HD38psHTa/RNw1LinJV5EjcyTyArU4nkSZPvAfbxnYb+Q36BYwd/jqLC5v+/qKSQvye2Zp51O6lUsGqvTk6YOKnOO5Pq+y1ZqVSrhZ31WNs5oLy0BJUV5Z3VBUO0a21rj4ryMv2HT+MErKxt9TfLy0qIqQkCltY2UL/glpcWk1NTnKysYWllg7KStvtFpLOAl5eWYuzEf8LNbRjORb2IlOT/bXut3Scnp2CMm/Af/aWDEStEv8SouaT+jSotLrhpeAMHPw1//yW4eP4tJCS03UmPncWxVe1aWMDGzlF/QMinaQI29k4oLVLziVLZFCk1n9SH8urD1PZ8hg1/Fa6ug1FUlISiojQUFSagpCRdC2NxcRqKi1LE13+0Zz+r67ax8cDESV/BytoRJ489gtyCaP17QVv9runqNhRjwj6s+n2johi52VHIzj6HnJxzyM05j+LilI4YZoNt3EiM6bS2zaFhs5fKhlYva69OKqnkO5XmMJUbHwO3v8ryy+2vMk7c/irjZE7bX2tfnP3t50FNfmo+furf0avvUvG7lU1tf50yZy16+E7C/u13IDWpamttd324/VWeeW5/lbFq7+2vsl50zagBQx/BsNG/Q/aNaBw7dj/ys1JQ2kareBOmfwz/PgsQffotRJ+qe1ND16TBXkkJmL1UKhBq5dHF1VVvcVVP7fckefqrdKoYN45SKcsdpVLGiVIp42ROUll971zcla8ReeBnTQKovvy8oqIMW74Zj8L8603GNyWV85ef1Id2bF47DgV5sTLwZhpFqZQnllIpY0WpbJyTlZUd5iw9AEfnPog+9ypizv29TaTS2SUYc5YdQEVFMTauHoHSkixZshhlCAJmIZW1rxSppl77MJ7637944XydK0F4T6Uh5qrJnaRUytBRKmWcKJUyTuYklXOXHYSza5B4xXDclA/RO3AZ1OESp4/+DmnJ+xqF1phUqpMgb/lelUjy7jReKSL7qauKolTKaFEqm+akdlyonRclJZnYsXE6CnNbvy11zKR30Tf4jjqny8qyxSgjEDALqTQC6PboI09/lVGlVMo4USplnCiVMk7mIpXqXrQZCzahqDAdG1cPFQ1erVbOXLQNVlb2Oj4xfjNORz6Lgry4m8o3JpWubgMxe+le5OVc1vfcdfeHK5XyGUCplLGiVDbPadr89fo6k0vnP8CZo79vvkATEeqKlIUrTukItUpZVJjcqvpYuOsRoFR2vZyIe0SplKGiVMo4USplnCiVMk7mIpUjxr2C4IH34dK5v+HMsap72ySPukZg6KjfISBoJSwsLFBeXoxL597HhTN/Qnn5/w4vakwq/fosxMTp/0LS9W04uOv7kibNOoZSKU8vpVLGilLZPCd1xcfMRdtRUV6iP9wqyL/5lOrma6mKGB72EkIGP4DYy1/hWETV62h8zIsApdLA+aRUypJHqZRxolTKOFEqZZzMQSrVxeOLVp6DrZ07dqyfjewbde+mlJDw8BqBEeNehad31dH56pqAs8dfRPzVqtNcG5PK/kMeRuiY5xAT/XecjvydpCmzjqFUytNLqZSxolTKOE2c/W/4+c1H/LV1OLrvAVmhelE2tu56ldLS0g7b1k1GXu5lk+phoa5NgFLZtfPTZO8olbLkUSplnCiVMk6UShknc5DKnr3mYPLM/yI3+yK2fTtFNvBGonoH3opho5+Fo1MvHZGZfhwnDj2BvLzLcOvZF5nXL9QpOXL8mwgacA9OHvktrlz4qFVtm0NhSqU8i5RKGStKpYxTz8AJmDhpFSytbLF700Jkph+TFawVVX3YWVL8Fhzc/YMWl2cBYxCgVBojTw32klIpSx6lUsaJUinjRKmUcTIHqRwb/jf06XcLzh5/GRej3pUNvIko9Sn9wNBfYMCQh2Fl7aDvx4u7+hWuJ36GlKuH65QMn/M1fHzDcWDHXUhJ3Nnqto1eAaVSnkFKpYwVpVLGyd0vGL3878DAIb9EVsYZ7Nw4W1bw/0epQ8cW3nZK7/jYtXEebmScbFF5BhuHAKXSOLm6qaeUSlnyKJUyTpRKGSdKpYyT0aXS2toJi26PhqWlLTatGYWigiTZwAVRDo7+etWyT7/lOrqsLA/nTryOyxc/QmVFmf7avFuPwcm5N7asnYD8vKuCWs07hFIpzy+lUsaKUinjpKSyKDcHM+Zth4OjL47s+xmuX/taVhhA8KAHMGLsS0hPOYy9W5eKyzHQeAQolcbLWU2PKZWy5FEqZZwolTJOlEoZJ6NLZUDQHQib/C7SkiOwb9utskG3MEqdLDtq/OtQh2GoJzfnMk4deRoZqYex7HtxqKgox7rP+qCysryFNZtfOKVSnlNKpYwVpVLGSUllflYKfH0XYGz4n1FYkIyt34zTh48191hYWmP+rce0jB7Y+X2kJGxrrgi/b2AClEoDJ49SKUsepVLGiVIp40SplHEyulSGz14FH7+pOBbxKGIvfy4btAlR6qCeAcMfQL9+P4G9g4+uIT3lILx7TkRezhVsXTfRhFrNrwilUp5TSqWMFaVSxqlaKksL8zB9wRZ4eo9E9Kk3EH36zWYrGDH2/xA86H7kZF3A9u+mNhvPAGMToFQaOH+USlnyKJUyTpRKGSdKpYyTkaVyYOhjGDryaT3Qb78IQVlprmzQJkRVn/6anRSHgcN+gUHDH6+pJTlhByJ2fs+EWs2vCKVSnlNKpYwVpVLGqbZUevYYi+nz16O8vAhb1o5DUWFKo5UMHfWM/jdNPfu23Ya05P2yBhllWAKUSsOmDqBUypJHqZRxolTKOFEqZZyMKJWu7oMwZtK7UNeAqOf8mXdw7uQrsgGbGFX/ShFHpz76KpFefZfyOpFaTCmV8glGqZSxolTKONWWSlVi/NS/63+frsd+i2MRv0R5WcFNFQ0KfRxDRj6lv35o94+QGL9R1hijDE2AUmng9FEqZcmjVMo4USplnCiVMk5Gk8rBw5/A4BFP6sEV5F/H8YOPITVpr2ywrYhq7J5KL5/xsLF1Q/L1ra2o3XyKUirluaRUylhRKmWc6kulo3MA5t96VBcuKkxF1Mn/Q2zM/14RCBn0IIaPfVF//+j+nyH+qvxQH1mPGNVVCVAqu2pmBP2iVAogAaBUyjhRKmWcKJUyTl1ZKu3sveHg6AcbG1c9mNCwl+DuOVT/96Vzf9O/JFWUF8kG2sqoxqSyldWaXXFKpTyllEoZK0qljFN9qVSlfHvPxfAxv4eza7CuJCvzLE5HPgsXtwEYNf41/bXjh57AtUufyBphlFkQoFQaOI2USlnyKJUyTpRKGSdKpYxTZ0mlk3Nf2Dv6amm0d/CDg6MPHJx6w8HBV3/dyTmgwQHk5sTg2IFfIjM9UjbANoqiVMpAUiplnFQUpVLGilIp49SQVFaX7Bv8PQwe8Ss4OvWuU9mZYy/g0rn3ZQ0wymwIUCoNnEpKpSx5lEoZJ0qljBOlUsapo6RSfVI+bsrf9ZH1dvZezXauuChTb28tyItDft41FBYkIS/nKlISdzRbtj0CKJUyqpRKGSdKpZwTpVLGqimprK4haOB9GBT6K9g7eCP69FuIPvW6rHJGmRUBSqWB00mplCWPUinjRKmUcaJUyjh1lFTWPqlV9ayoMB0FebEoLEhEXu5VLY35uUoeE7U8VlQ0f7eabIRtE0WplHGkVMo4USrlnCiVMlYSqVQ1WVrZw6/XbCTErZdVzCizI0CpNHBKKZWy5FEqZZwolTJOlEoZp46SypmLdur3IY/u/ynir66Rda4LRVEqZcmgVMo4USrlnCiVMlZSqZTVxihzJkCpNHB2KZWy5FEqZZwolTJOlEoZp46QSrX1de6yCJSW5mHDqsGoKC+Rda4LRVEqZcmgVMo4USrlnCiVMlaUShknRgGUSgPPAkqlLHmUShknSqWME6VSxqm1UunhPRrWVg5ISznQaIPVd6HFXv4SxyKqLtk22kOplGWMUinjRKmUc6JUylhRKmWcGEWpNPQcoFTK0keplHGiVMo4USplnFojlW4eQzFr8U7d0KE99yOxkXd0qre+Ruz8PpITtsk61sWiKJWyhFAqZZwolXJOlEoZK0qljBOjKJWGngOUSln6KJUyTpRKGSdKpYxTa6Ry4oz/wq/3HN1QeupR7N2y+KZGzWHrqxoUpVI2nyiVMk6USjknSqWMFaVSxolRlEpDzwFKpSx9lEoZJ0qljBOlUsbJVKl09xqJmQu31Glkx/qZyL4RVedrA4c9hqGjnkbcldWIPPCwrFNdMIpSKUsKpVLGiVIp50SplLGiVMo4MYpSaeg5QKmUpY9SKeNEqZRxolTKOJkqleGzV8HHbypORz4PGxsXDB7xBOKurkXk/ofqNDxr8W64eQxGxM4fIDmhroTKetg1oiiVsjxQKmWcKJVyTpRKGStKpYwToyiVhp4DlEpZ+iiVMk6UShknSqWMkylS6eUzAdPmrUNRYSo2rwmDja0rFtx2Uje4Ze1Yfdekesxl66saC6VSNp8olTJOlEo5J0qljBWlUsaJUZRKQ88BSqUsfZRKGSdKpYwTpVLGyRSpnLFwCzy8RuLkkWdw5cI/dEOjJ/4JgSF34vyZd3Hu5Mv6a9VbX9W9lOp+SiM/lEpZ9iiVMk6USjknSqWMFaVSxolRlEpDzwFKpSx9lEoZJ0qljBOlUsappVLZ038WJs/6rGqVcu2YmjsnnV37Y+6y/fouyo2rhqG8vBDVW18P7roXSdc3yTrURaMolbLEUCplnCiVck6UShkrSqWME6MolYaeA5RKWfoolTJOlEoZJ0qljFNLpXLW4l1w8xiCE4eewtVLH9dpJHzO1/DxDdffS0vZh7nLIlBeXoTvvuxfI5+yXnW9KEqlLCeUShknSqWcE6VSxopSKePEKEqloecApVKWPkqljBOlUsaJUinj1BKp9O+zCBOm/xMF+QnYum7CTaLo23suJs34BHm51xB3+UsMGfkU4q+uxdF6h/fIeta1oiiVsnxQKmWcKJVyTpRKGStKpYwToyiVhp4DlEpZ+iiVMk6UShknSqWMk1QqnV2CMH76v+DmPgjHD/4K12L+22ADc5cdhLNrEMrLCmFl7YBDu3+ExPiNss504ShKpSw5lEoZJ0qlnBOlUsaKUinjxCgzk8pbl6/Ac8+/iE8++Rhvv/l6TX4//XwVwqdMrZPvixfOY86safprqtxLL78KFxcX/fcvPv8UTz35eIPlk5IS8fijjyDiwP5Onz+USlkKKJUyTpRKGSdKpYxTU1JpbeOMPoHLERC0El4+43SF+Xlx+oTXxp6ggfdh5LhX9LfLygqw/stBqKgolnWmC0dRKmXJoVTKOFEq5ZwolTJWlEoZJ0aZiVROmhyOt995D35+/igpKcEH7793k1QGh4Q0KIPVZS/HxODuu1bi8Sd+jfvufwD//OhDXcdrb7yNRYuX4tlnnsbaNauxbccePW+qhbQzJxGlUkafUinjRKmUceouUuniNgD29j2QlnJABqZeVENS6dljLPoG3Y6A4DtgZWVXUyL+2je4GPUesjPPNtqWlZUDFqw4BVtbN6j4o/seNKlfXa0QpVKWEUqljBOlUs6JUiljRamUcWKUmUhldSKbWqlsTCqVRN5zz7148YXntDTWl0wlkampqVo41VNfMjtzElEqZfQplTJOlEoZp+4ilcPD/oCQwT/B4T33IyFuvQxOrahqqbS1CECvvkv0HyWE1U9u9iVcvfQpYi9/htKSbIFpNCIAACAASURBVFH9/gGL4eo+CCkJ23Ejo+r+SqM/lEpZBimVMk6USjknSqWMFaVSxolR3Ugqa29/rb31tSFJrF6NfP65Z/QKaPUqppow9VcyO3MSUSpl9CmVMk6UShmn7iCVllb2WLjidI0Enjz8NK5c/JcMEAB1PUhA8G3w6zUf1jZONeWKizL1FSCxl79ERuphcX3mHEiplGWXUinjRKmUc6JUylhRKmWcGNVNpLJ2oqvfnzx18oRefVRSOW36jDpbY+tL5Z7du2resawvlV4BQzptHllZ2aCiogyVlZWd1gcjNGxpZY3KigpUVlYYobud1kdLSyvddkVFeaf1wQgNa04WFqgoL4OFETpsQh99fOdj0MCn6pSMi/0vrl37qMHaLCys4eE5Fj28p8HTezJsrJ1r4oqKU5CRth/pGfuQk33GkD+HpcWFsLFzMIGkoIiFBdS/URVlpYLg7hxiAUtrG1SUlXRnCKKxW1rbkpOAlJ5P5WVAM79DdfffsKp+1yw35L/dgmlQJyQj7lxLizC+FgELDw8Ps/l5aWz7a/2Mq4N7fHx89HuRrV2ptLK27bQJ5dqzLwqy0lBWXNBpfTBCw85evVBSmIuSghwjdLfT+ujg5qP/T6MoJ73T+mCEhu2c3aFWlwpuJMNs/vGsB37qnHXw9B6NoxE/R0FeLCZO/2/Vu4xX1+L44Uf1PLG0soGP7wz0ClgEX//ZsLF1ralFbW1NSd6JG9mHkXB5mxHS2kwfVabb5yMEK2s7uHj3QlbyFTPg1H5DsLC0hKd/f2Rcv9B+jZhJzV69ByIz4VK3kIDWpMzdNxi56fEob+aDivb5yW9Nzzu2rItPAApz0lFWZP6/azY3FzqWvPFa6/ZSyXcqjTdpW9pjbn+VEeP2Vxknc9/+6uo+GLOX7EZJSTbWfzlAQ1HvMYbPXgV7Bx9kph3TJ7X69ZkHa2vHGmjqHcfEuE36/cu8nBhIrxSRUTffKG5/leWW219lnFRUj8BQpMdGUSqbQcbtr7I5xe2vMk6M6gbbX9XBO7964im89eZr+hqQ6u2vG9Z/q7e08vRX8/8xoFTKckyplHEyd6kcOe41BA28F5fOvY8zx16ogeLoHIAps1fDyaVvzdfSkiP0O5IJsRtQWJBQByClUjafKJUyTpRKGSdKpZwTpVLGilIp48QoM5HK2leKVCe19n2S6h3JAQMH1eR7/769Nae5qi/ynkrz/lGgVMryS6mUcTJnqVTXdixaGaUP19m6bhLyci7XgWJn3wOhY15AWvJeJCdsQ3FRRqPQKJWy+USplHGiVMo4USrlnCiVMlaUShknRpmJVHbXRPL0V1nmKZUyTpRKGSdzlsrAkO9j9MS3kJq8H/u33SYD0kgUpVKGj1Ip40SplHGiVMo5USplrCiVMk6MolQaeg5QKmXpo1TKOFEqZZzMWSpnLNwKD68ROLL3AVyPXScDQqlsFSdKpQwfpVLGiVIp50SplLGiVMo4MYpSaeg5QKmUpY9SKeNEqZRxMlepVIfxzF6yB+ouyY1fh6KyokwGhFLZKk6UShk+SqWME6VSzolSKWNFqZRxYhSl0tBzgFIpSx+lUsaJUinjZK5SOXL8mwgacA8unH0PUSf+IIPRRBS3v8oQUiplnCiVMk6USjknSqWMFaVSxolRlEpDzwFKpSx9lEoZJ0qljJM5SqWVtaM+oEcd1LN5bRgK86/LYFAqW82JUilDSKmUcaJUyjlRKmWsKJUyToyiVBp6DlAqZemjVMo4USplnMxRKvsN+CFGjX8dKYl7cGDH7TIQzURxpVKGkVIp40SplHGiVMo5USplrCiVMk6MolQaeg5QKmXpo1TKOFEqZZzMUSrDZ6+Cj99UHNpzPxLj1stAUCrbhBOlUoaRUinjRKmUc6JUylhRKmWcGEWpNPQcoFTK0keplHGiVMo4mZtUevUYh2nzv0NRYSo2rg6VQRBEcaVSAAkApVLGiVIp40SplHOiVMpYUSplnBhFqTT0HKBUytJHqZRxolTKOJmbVE6e9RV6+k/D6cjnERP9VxkEQRSlUgCJUimDBIBSKUaFHoGhSI+NQmVlhbxQN4ykVMqSTqmUcWIUpdLQc4BSKUsfpVLGiVIp42ROUunpHYbpCzaguCgDm9aMRkV5kQyCIIpSKYBEqZRBolSKOXGlUo6KUiljRamUcWIUpdLQc4BSKUsfpVLGiVIp42ROUjlp5mfw7TULZ469iEvn/iIDIIyiVMpAcfurjBNXKmWcKJVyTpRKGStKpYwToyiVhp4DlEpZ+iiVMk6UShknc5FKd89QzFy0HSUl2di4enibrlIqkpRK2XyiVMo4USplnCiVck6UShkrSqWME6MolYaeA5RKWfoolTJOlEoZJ3ORyokzPoFf77k4e/xlXIx6Vzb4FkRRKmWwKJUyTpRKGSdKpZwTpVLGilIp48QoSqWh5wClUpY+SqWME6VSxskcpLL2KuXmr0ehrCxfNvgWRFEqZbAolTJOlEoZJ0qlnBOlUsaKUinjxChKpaHnAKVSlj5KpYwTpVLGyRykcsK0f8E/YCGiTryKC2f/KBt4C6MolTJglEoZJ0qljBOlUs6JUiljRamUcWIUpdLQc4BSKUsfpVLGiVIp42R0qXRxG4DZS/aitDQH7bVKqUhSKmXziVIp40SplHGiVMo5USplrCiVMk6MolQaeg5QKmXpo1TKOFEqZZyMLpXjpvwdvQOX4typN3D+9JuyQZsQRamUQaNUyjhRKmWcKJVyTpRKGStKpYwToyiVhp4DlEpZ+iiVMk6UShknI0uls0sQ5iyLQHlZATatGYXSkmzZoE2IolTKoFEqZZwolTJOlEo5J0qljBWlUsaJUZRKQ88BSqUsfZRKGSdKpYyTkaUybPIHCAhajvOn38a5U6/JBmxiFKVSBo5SKeNEqZRxolTKOVEqZawolTJOjKJUGnoOUCpl6aNUyjhRKmWcjCqVVauUB1BeVtjuq5SKJKVSNp8olTJOlEoZJ0qlnBOlUsaKUinjxChKpaHnAKVSlj5KpYwTpVLGyahSGTb5zwgIWokLZ/+EqBP/JxtsK6IolTJ4lEoZJ0qljBOlUs6JUiljRamUcWIUpdLQc4BSKUsfpVLGiVIp42REqXRw6o35tx5FRUUJNq4e3q7vUlZTpFTK5hOlUsaJUinjRKmUc6JUylhRKmWcGEWpNPQcoFTK0keplHGiVMo4GVEqR098B4Ehd+HC2fcQdeIPsoG2MopSKQNIqZRxolTKOFEq5ZwolTJWlEoZJ0ZRKg09B6RSOXTU7zBw2CMNjvXKhY9x8sjTACoNzaKpzlMqZamlVMo4GU0q1SrlvFsOo7KyDJvXjEZxUYZsoK2MolTKAFIqZZwolTJOlEo5J0qljBWlUsaJUZRKQ88BqVTOveUwnF0CGx1rbMznOHbwUUOzoFS2Pn2UShlDo0nlqAlvol//e3Dp3Ac4c+z3skG2QRSlUgaRUinjRKmUcaJUyjlRKmWsKJUyToyiVBp6Dkik0s0jFLMWb0dRYSo2rg6tM14fv6mYOOMTWFnZIzF+E47s/QkqKkoNzaShznOlUpbSjpJKO/seUIfGHN5zH8rK8mWd60JRRpJKe4eemL/8eIevUqp0USplk5ZSKeNEqZRxolTKOVEqZawolTJOjKJUGnoOSKRy6KjfYuCwX+JS9F9xJvL5m8br1WMcJs36HDY2zkhJ3I2Du3+IivIiQ3Op33lKpSydHSGVNrZumDrvW7i5D0JC7Hoc3nu/rHNdKMpIUjly3GsIGngvLp37G84ce65DKVIqZbgplTJOlEoZJ0qlnBOlUsaKUinjxCgzk8pbl6/Ac8+/iE8++Rhvv/l6g/ndtmMP/Px74dlnnsbaNat1jCr30suvwsXFRf/9i88/xVNPPl5T/tPPVyF8ylT996SkRDz+6COIOLC/0+ePRCrnLjsIZ9cg7N60CJnpkQ322d1zOMJnfwVbOw+kpx5GxM7voaw0r9nx2dl7wcbGDTa2LrC2cYGtrbv+XyUO1jbO+u82tq76T0lxNo4f/GWzdbZHAKVSRrW9pdLK2hFT5nwNT+/RNR06ffQ5xJz/m6yDXSTKKFJp7+CLhStOaWrqxNeiwpQOJUiplOGmVMo4USplnCiVck6UShkrSqWME6PMRConTQ7H2++8Bz8/f5SUlOCD999rUCqVUA4YOAi5ubk1Ulld9nJMDO6+ayUef+LXuO/+B/DPjz7Udbz2xttYtHhpTbyqQz1zZk3r9PnTnFS6eQzBrMW7UFiQhE1fj2yyvy5uAzBlzmqo7XL5ubEoyE+oE29hYamlUwmjra0brKwdWjz+Kxf/jZOHf93icq0tQKmUEWxPqbS0tMOkWZ/Bxzdcb8W+cuFfGDLyKd2xPZuXICPtiKyTXSCqo6VSfUBjZ+cFWztP2Ni6w8HRB7b67+6ws/eBnZ2n/tlU24r1Bz22rnUoxUR/iNORz3Y4OUqlDDmlUsaJUinjRKmUc6JUylhRKmWcGGUmUlmdyKZWKtVqo4+PD44fP1ZHEpVE3nPPvXjxhef0ymV9yVQSmZqaqoVTPfUls/4kCh70Y/QNvkv/0hx/bQ3KywrabZ41J5VDRjyFQcMfR0z033E68nfN9sPJuS+mzF0LR6dezcaqgOKiTH3fXWlpTt3/1V/737tyVlZ2GDjsF7rOU0d+i8sXPhLV31ZBlEoZyfaUSvXurl/vuSgtycGezYuRk30BI8e/jqABP0RhQTJ2bpiN4qI0WUc7Oao9pNLTOwy9A5fBzt5by6OSSCWIDk7+4tGWlRWguChd/1yWFGfoU15LSjJxKeoDFBUmi+tpq0BKpYwkpVLGiVIp40SplHOiVMpYUSplnBjVTaRSCWVwSIjetrrsluV1pLIhSaxejXz+uWf0Cmj1KqaaMPVXMmtPot6Bt2LclL/WfKmsNB9xV77ClYsfIyfrfJvPt+akcs6yA3BxDcGeLcuQkXpI3L7apmht7QRrGydYWTnA2toRFpbWVeJYUiWQLT1gpW/wHRgz6V3dh33bViItea+4P60NpFTKCLaXVI4N/wB9+i1HeVkh9m5bjhvpx2s6NGPhVnh4jUBa8gHs27Zc1tFOjmprqXR06oOZi7bp1cbaj5bC4gwUFaajpDgTJSU39CpvaUmWFsaiwrSa/y4sqLuzoJMR6eYplbIsUCplnCiVMk6USjknSqWMFaVSxolR3UAqlTROmz6j5j3I+hJZ//tqUtSXyj27d9W8Y1lfKh3dfPQ88vYJR9iED/R/X738b70tzb/Xgpo5diPzJM6ffQXZWefabN45uHmhpCAX5aUlN9Xp7BqC8Olr9crFrq0z2qzN1lQ0YPAvENT/JygrzcXBvd9Dfv611lQnLmvv7IGykkKUlZjXAURiAMJAW0cXVFZWorSw+fdphVViSOgzCOh3pw6PPPgQ0tMO1Clq7+CH8Olf63dxr1z6CBej35FW3WlxNvaOsLSyQXF+NmDRum5YWtljYvincHEdgMSEjbhy6cMagWxdzZ1fWsmSrb0jCnMzO78zrexBZUU5lNS0x2NpaQN7F3cUZBtjpb49GEjqVK9gOLr7IP9Gx6+6S/rXlWKcPHxRcCMFlWZ8/3Rb8Fa/vxXlZqKioqzp6sz3Gm8RRvVBaklhw79riiowUFBBdqqBetv1umrh4eFhNj8uDW1/rX3ITm381e9VTpg4qc7KpYppyUqls5c/3NxDETbuQ1hZ2+Pc2ZdxPa7qACAlln0CVqJ3wAp9aE1paTaORNzbZjJl7+SBkqI8VJTffA1IUP8HEdL/IcTHfoXoqFe6zMwbMfpN9PSdhYL8OBw8cDfKy9pOYBobpFoxUeJdXkqpbGoi2Ng5A6hEaXHbXPMREPg9DBrypG7y1ImnkJK0tcHmvbwnYMy4qg9kTkQ+hrTU3V1mvjbUEWtbB1hYWaO0MFfhatUzYvRr6Ok3F7k5l3A44h5UlBe3qr6uVNjKxhbWto4ozs/qSt0yqS8V5WWwtLI2qWxzhSysrGDn6KZ/ueXTBAELCzi6elO+BZPE0a0HCnLSgcpW/gMlaMvIIfYuniguyEZleXnTw2jlh4dGZqR/l3VyR2lxASrKbl7AMPrY6vc/LyPR3IbUoeMxe6msT7P+SmVr36lUB9xMm/edPjTj3MnXcP7M2w0mcPzUf6BX3yUozE/Ezo3zUFzU+k9Dmtr+Omfpfri49ce+bbchLbnzT6qthqJWZqbN+1ZveUxN2of921e0+4Tn9lcZ4rbc/urbazYmzfxUNxx14hVcONv0CuTg4U9g8IgnUVqSi50bZiE/L1bW6U6Iaqvtr/2HPIzQMc+hpPgGdqyfha64hbU1eLn9VUaP219lnLj9VcZJRfUIDEV6bBQqKyvkhbphJLe/ypLO7a8yTozqBttfm5PK1p7+umD5CX2YhuQwnMmzvkRP/+nIzjqPPZsXia7taGqSNiaVSnTnLN2n37vasGpIl5vnagV3xsLNdQ4Eys2+hLzca8jLiYGVlT3sHHrA1tYTDo49YWvvjfzca/oOzaKCpBaPh1IpQ9ZWUqlOHZ42f4N+F/dazOc4fvBRUQcmz/ocPf1nIvtGNHasny4q0xlBbSGVPn7TET77S939fVuXIy2l7rbgzhhXW7dJqZQRpVTKOFEqZZwolXJOlEoZK0qljBOjzEQqa18pUp3Uxu6TbOhgntbcU7n8nhTEXVmFyAM/b3Y+qUNvpsxdo+/py0g9gn3bVqCiwvTtbo1JZfWqz9WL/8GJw1XbD7va4+o2ECFDHoISYHePoaIrStSKzuG9D7T4kB9KpSz7bSGVtT8wSE3ai/3bq05NljzquoxZi7bD0bkPYi9/iWMRVScGd7WntVLp5BIIdUCRuprHiPd0SvNBqZSRolTKOFEqZZwolXJOlEoZK0qljBOjzEQqOzORamUlJXGnuAvqnsep876Fm/sgJMZvxqHdPxSXrR/YmFTOWrJH179/++1ITaq6V7OrP+o6Exf3gXB1G4Ty8gIUFaTo0y6r3wnpFbhMXz+hnuhTbyD69JviIVEqZahaK5W1tzbnZF3Abr0anytr/P9HuXsO1yehquf4wV/hWsx/W1S+I4JbI5WK0cyFW+HqPhDxV9fi6P6HOqLLndIGpVKGnVIp40SplHGiVMo5USplrCiVMk6MolR2yhxQl5Sr9wqdXYOQlhyBo/t/atI9cg1JpbNLMObeEqHf01r/1aBOGV97Ndo78BaMnvC2vuok6fpWRO5/WN+R2dxDqWyOUNX3WyOV6jqMURPeQq+ARfrai12bFqAw/7qs4XpRgSF3Y/TEqneTd26Yg6zM0ybV016FWiOV46d+hF59FyMr86yW7opy8z08ilIpm4GUShknSqWME6VSzolSKWNFqZRxYhSlstPmgFqZmzJ3rX6vUN1neeroM4i9/HmL+tOQVA4KfRxDRj6FazGf4fjBx1pUnxGCnV2DoX4xd/MYjPy8OOzetKjZQ48olbLMmiqVIYN/isEjnoCNjbO+i3LPlqWtFsHRE/+EwJA7UZAXjx0bZum7UbvKY6pUDgx9DENHPq0/8FGyXJAf31WG1C79oFTKsFIqZZwolTJOlEo5J0qljBWlUsaJUZTKTp0DNjauGDnhDfQJvEX3IyVxF44dfKzZw2isrB3h4OAL7z6jUFliCWtrN31xurpjMCBoJZxdAnFgx10t2pbbqSBa2LjaQhg2+T307rsU8VfX6JXeph5KpQxwS6Wyd+CtGDrqt3ByDtANZGWcwckjTyEz/ZiswSaiLC3t9GFO6tCf5IQdiNj5vVbX2VYVmCKVPf1nYfKsz3QXzPVgnvp8KZWyGUeplHGiVMo4USrlnCiVMlaUShknRlEqu8Qc6NNvOUaOew02tq76SgX1vmBpSQ7sHXyq/jj2hNoya29f9d/qVM2mnpKSbKz/ckCXGFt7dcLaxhnzbjmkuezdegvSUw422hSlUpYFqVQ6uwQhLPwDeHqP1BWrFeNzJ1/Rgt+Wj1rNn7loB2xsXRB18lVcOPPHtqze5LpaKpVqdX3Ggi16HKcjn0VM9Icmt22kgpRKWbYolTJOlEoZJ0qlnBOlUsaKUinjxChKZZeZAw6OvRA2+c/o4TupyT6VlxejsCBJr2ZWoAC5WVeQn5uAosIkFBYko6gwBfm5V7vMuNqzIwFBt+sVy9zsi9j27RRKZSthS6TS2bU/ps5doz/sKCnO0veyxkT/rZUtN17ct9ccTJpZdViPOklWnSjb2U9LpFJ9+DFj4Ra4uIYg7spqRB54uLO732HtUyplqCmVMk6UShknSqWcE6VSxopSKePEKEpll5sDA4Y+As8eYSj6/4JYqGQxP0kf5KOEUb2PVf00dvprlxtUO3ZI3Yfo1SMMpyN/j5joDxpsiSuVsgQ0J5Wu7oMxZc7XsLP3QlL8FkRG/AKlJVmyylsRNWTk0xgU+pi+d1W9X2nKXaWtaP6moi2RygnT/w3/PvORlRmF3ZsXmvXBPPVBUSpls45SKeNEqZRxolTKOVEqZawolTJOjKJUGnoOUCoBN89hmLVohz4gZss347V4138olbJp3pRUunuGInz2atjauXfKVRjhs1fBx28qbmScxK6N82QDaqeohqRSrUj69Z6n3wFV8u3mMRQOjr66B8VFmdi5YRYKCxLbqUdds1pKpSwvlEoZJ0qljBOlUs6JUiljRamUcWIUpdLQc4BSWZW+EeNeQfDA+3D92joc2fcApdLEWd2YVHp6j8Hk2V/p012vxXyK4wcfN7EF04vZ2nnqDw8cnPxx+fxHOHX0t6ZX1sqS9aXSzt4H4bO/1EJZ+ynMT9SHFl0691dkpke2slXjFadUynJGqZRxolTKOFEq5ZwolTJWlEoZJ0ZRKg09ByiVVemzsXXDnKURsHfwxr5ttyEteX+dvHKlUjbNG5JKL5/xUKuEVlZ2uBT9V5yJfF5WWTtEKbmdvmCjrvnIvgdx/do37dBK81XWlkr1jumUOavg4Oin33W+fm0tMtKOIzPtqEl3zzbfunEiKJWyXFEqZZwolTJOlEo5J0qljBWlUsaJUZRKQ88BSuX/0tc3+C6MmfQOcnNisG3dZEqlCTO7vlQ6ufTDjAWb9ZbXcydf04fydPYTNPA+jBz3it7uvHPjXH1IU0c/1VJpa+GHSTM/ha2tG3KyLuiDhBraft3R/esq7VEqZZmgVMo4USplnCiVck6UShkrSqWME6MolYaeA5TKuulTAuThPQpnj/8BF6Peq/kmVypl07y2VFpbO+l7Il3cBojuApW10DZRYZPfR0DQbcjLuaLFsqw0t20qFtaipNK311wMH/WaXsHNSD2CiJ13o7Q0R1hD9wijVMryTKmUcaJUyjhRKuWcKJUyVpRKGSdGUSoNPQcolXXT5+E1AjMWbkV5eRG2fjMJhQUJOqC1Umlt49Lh4tIZE7O2VE6c/h/49ZmHGxmnsGfzElRUFHdGlxps09LKHjMXboWr+0Akxm/Cod33dmjfBg7/GYaOqNoGnBC3Hof33N+h7RulMUqlLFOUShknSqWME6VSzolSKWNFqZRx+n/t3XmcFOWdx/EfIDCIg5wjIMgpIoogyH2DIHKJRGKMx2o05qUJG5dodJcVI4nrEUPcEHXXjYmJL4MJCooil9yncoiKCDjcpwNEnGGGmQFhX0+Ramseqrt/PTNd0118Zv/YSD91vZ+nq+tbz1NPUYpQmdZtgFB5dvV17PZradnmDtm76x35cOk9ZQ6VlStXlT6Dp8u2zX+QvbveTuv2Em/n3VDZvPldzis8Co8floWzBqbkkM4aNZvItSMWSdVqtWTj+idk62e/i3d45fJ5u47/Lm3bP+Csa1f2VFm36t9E5HS5rDtsKyFU6mqUUKlzIlTqnAiVeidCpc6KUKlzohShMq3bAKHy7Oozs4ReN/oDJ2yYZ9xyDiwtU09lpx7PSfPWt0hx0VGZP7O3FBUeSus2E2vnTajManitXH3Ns06xxbOHObOXpupfVqN+0vvavzu7t2z+WDl0cGmJXc2o0VBatb1Hzr+gqaxZ9qMyH0bnnlOkWavvOuvJ3vqifPLBL8q8zjCvgFCpq11Cpc6JUKlzIlTqnQiVOitCpc6JUoTKtG4DhEr/6mt+6e3SqfuzzjN3897uUepQ2artD6VDl19FNlIRQy2DbKANm/WTbr3+IlWqZMjaFT+R3dunBbn5Um2rzRXj5MpO/ynFRV/JgnfNuyD3Sb0GXaXV5T+UJs1GOes8ebJAZk5tUar1m4WqnHe+dO/3J7mocX9nHZ+snyAHv5wjxw7vLfU6z4UFCZW6WiZU6pwIlTonQqXeiVCpsyJU6pwoRahM6zZAqIxeff2vnyt163eUzz56Ug7kzJCi/K+lKP+our69vWBfbHpRmre+TapWy5Q1y+9zJq5Jxb9eg6ZK5coZsm7VT6Xg2O6EdrF6Rj0ZOGKB1KjRSLI//1/5ZO3EhJavyMLd+v5BLm42Uo7+4zOR06ekdr32Z+2OeS70yKEPE97N6hn1pefAv4p5XtfMOLtq8V2Sl/+JVKlWg1AZR5NQqWtuhEqdE6FS50So1DsRKnVWhEqdE6UIlWndBgiV0auvdr2OMnDYXGfSnpXLvyu5R7aoQ+UFtVrJgOvnOiFyZ/ZUWb/qAWna4ibp0vt5OVGc6wyDTbVXRzRpfqN07fM/DsjmT5+TTRueTKht9x3yltS/qIccPrRals65IaFlK7qw6Uk0dW1mqnX/zAQ627e84vRWtmhzR6leiXJBZkvpNeh1qZnZTIoK/yErFt4iR49sEO97Kiv62FN5+4RKXe0QKnVOhEqdE6FS70So1FkRKnVOlCJUpnUbIFTGrr5O3X8rzS/9vuTkLJE1y+9VhUoz0+ug4QucIHHk0FpZNm+0nDp1wtmQCRgXNR4gB/ctkJULv59SbaffdbOkXtY1zj4VFR6R2W92iOx3vB3to7rWOQAAIABJREFU3PN30qzVzVJQsFdWLrlZcg9nx1sk5T4379Q074zcu2OGbN/6ZykqzHH2sUmzG6Rr35fk0MGVsmz+jer9rlOvo1Pf1arXkYJje2TZ+2MlP2+HszyhUsdIqNQ5ESp1ToRKnROhUu9EqNRZESp1TpQiVKZ1GyBUxq4+M6RzyOgPpWrVC+SD5XfKvh2zYy5QqVIV6XXt3yWrYW/Jy93mTFRzovjbIbNmKOTgUSukWvXasnblT2X3ttdTov3UrtteBg5/v8S+rF5yt+zf/W7c/WvR5i65uttTcvJEvqxecZscy9smBUe/jLtcuhSoWq22jLx5i5w6dVLeeb2lfPNN/FejXNR4kHTv/yfnHZS5R7fIsvljpKjwcOSQCZW62idU6pwIlTonQqXOiVCpdyJU6qwIlTonShEq07oNECrjV1/LNndJx25PSX7+bpk7vUvMBS7v8JBcftWDUlz8tSx677pIz5R3oUZNr5ce/V+REyeOyfsz+8jxgv3xd0JZwvSKtbj0Dtmy8b+VS5wp5s5Qu2Xj7+R4wQHp2PVJ+XL/Ilmx4Hsx19Pgol7SZ8iZ50NXLrxN8go2yunTp0IVKs2xDRqxSC6s006Wzb9JDh1cFtOkWatbpHPP55wyOQeXy+rF/yInTxwrsQyhUtc8CZU6J0KlzolQqXMiVOqdCJU6K0KlzolShMq0bgOESl31DR61VDIvvEw2ffyMbP7kN74LmeGT141e7Xy2YsEt8uX+hVFXfk2v38slLcfKl/sXy4oFN+t2Ik6piy8ZIR26Pi0ZNeo7gfarIxtU6zWvUBnx3c+dsrOnd5aTxbkybOynzgyuc2Z0iTphz/k1m8rA4fOd4Z3uex7d91SGqafSuLTvPEkubfcj2fzpb2XThqeiurZtP17adXzY+dxMxmQmZfL7I1SqmqYQKnVOhEqdE6FS50So1DsRKnVWhEqdE6UIlWndBgiVuupreukI6dL9ZWfoo5lkx29mVPO+QzPj64E9c2XV4jtirrhq1VoyZPRKqZ7RQFYuvFUO7is59FS3V2dKmVDYoeuT0rT56Mhi+3bNlA+W/lC1GveVGvt2z5IPlvzAWcbtuYw2YY+Z2Kb/0FlO792enW9F3uEY1lDZsMkQ6TngVTlyaI0smTPC19X0EF/d/dfOZ2a230/XRX8HJaFS1TQJlTomIVTqoAiVOidCpd6JUKmzIlTqnChFqEzrNkCo1FVfraxmclnbR6RpszFyYO98WbXothILNr5kpHTv9wdnpth5b/VQDWltffmP5KprJsnRI5/Kwveu1e2IVcrbO1lcdFQ+2/Bf0r7TY3Je1Zoy963uvsNv7Q0NHbNezq95cYmhnXXqd5IB18+WosJDMmvalWftW7d+f5SLLxnu7PviuSPk1DeFTpmwhkoz+dKo752ZfGjm1JZy8mT+WSbXjlwqtWpfppolllCpa+70VOqcCJU6J0KlzolQqXciVOqsCJU6J0oRKtO6DRAqddVnQuXpk5Wl/5D3nUl7Vi68XQ7um+csXLlKhgy9cY1k1MiSjet/KVs/+71qpZUrV5XrRn8oNWo2ltVL7pH9u99RLWcKmSGnHbs+LU2an3l1h5lNdt3Knzoh8MrOv5A27e6T7Vv/Ihs+eCjmOhs1HSY9+v9JjuXukHlvdy9RdtDIJXJh7bZiT9jT9qoHpV2Hh6Tw+GFZOGtgiVejhDVUGpj+18+RuvWvdp4dPbhvfgmrelndpd91b6tnzSVU6po6oVLnRKjUOREqdU6ESr0ToVJnRajUOVGKUJnWbYBQqas+EyqL8r+WJk3HSocuv5KC/H0y/+0eznBYN8Tl5WbL+zP7yunT3+hWKiLNWn1fOvf8reR9/YW8/45Z9lTcZRs1GSpXd/+N8+yk6Z38ZO1/yu7t0yLLZZzfSIbeuNZZ15zpV5eYddReee/Bbzoz1X60+mHZ8cUrJT52Z3U9uG+RrFx4ZsKexk2HObOanvrmhCyZO1K+OvJRiWXCHCrbdZwgbdv/q2zd9KJstIa2XtPrRbmk5RjZ/OnvZNOGJ+LWIaEyLpFTgFCpcyJU6pwIlTonQqXeiVCpsyJU6pwoRahM6zZAqNRVnxsqi/KPyuBRyyXzwkvl84+flT07Z4gZ9li5chVZPHu4/OPwWt0K/1mqUqXKMuSG1c47Ldcs/4ns2fFtOLRXZHonO3R9KvLspLd30i57Ta/n5ZKWN0m0ZyJN+cwL28jgUcvkRHGevPdGe/nmm+MlVmOe+xx200apXKWazJ3RxRlSO2DYXGcCn3Ur/1V2bfvbWcca5lBpnpc1z83aw5XNM63DbvpUzOtkjFNB/p64bYBQGZeIUKkjckoRKnVYhEqdE6FS70So1FkRKnVOlCJUpnUbIFTqqs8bKus16Cr9hp4Zqlp4PMcZ9roz+6+yftW/6VZmlXKfxzyev1/mzLjGt6ezRO9k8dfy6dpHfUOdu2ozgY55DYZ5bcmsaVdEnnn0btrMFNvqsjsl+/P/c3o7/f469fitNG/9fdm+9c/S8OJrnWcvY5UPc6g075wc+b3tTnh89+9tI+8fbXPFT+TKTo9KzoGlsvz9sao2QKhUMdFTqWMiVCqdCJVKKBFp0Ly9HN71mWr0jH6t4StJqNTVKaFS50SpkIXKG8fcJBMfmySvvvqKTH72mUj9vjZ1mvTu0zfy38uXLZVbb/n2AtIs98snnpLMzEynzOtTX5OHHxrvu/yBA/tl/APjZOWK5RXefgiVuirwhkqzhPtKEPO/iwr/IfPe7hEJGbo1liw1YNg8qVOvg6xf/aDs/OLVyIdO72SXJ6VpixudfzO9k+tXjZfC4wfjbqbXoNflosYD5JO1EyX78/8tUb5u/Wukz+A3pMp5NZyJhY7lbfddX+16HWXgsLmRz+IFpzCHSoPQZ/AMadCwp6xefJfs3/Oe4zLkhlVyQa2WCT0XS6iM23ydAgx/1TnRU6lzIlTqnEwpQqXOilCpcyJU6pwoFZJQ2bNXb5n83BRp1KixFBcXy4svTImESvPZ45OekBeenyIzpr8hboCc9e5MJzi6y27LznaC5vgHfy4/uPte+ePLLznrePrXk2X4iFHy6IRHnOXnL1jitJvBg/pVePshVOqqwA6V1TOynHdSmiGhZoKcXdte160oSqkGDftKn8HT5HjBAZn9ZkenlHl+sWO3ZySjRgM5UZzrhMNd26aqt+O3TrPwpe1+LO07T3TWs3/PbFm9+M6Y6xw4fKHUrnuFHMvb6bz/8kTx0ajlwx4q2171M2nX4eeybfPL8vGa/xDXuPD4IXnvjbNnyY0GRajUNWNCpc6JUKlzIlTqnAiVeidCpc6KUKlzolRIQqVbkdF6Kr0V7Rcib7/9Tpn0+EQnNNqfmxCZk5MT6dm0Q2ZFNiJCpU7fDpVmqdaX3ycXNxshS+YM160kTqm+182U+lndnGc1L6jVKtI7aXoH164Yp+qdtDdhhsCaobBm+QN75kiXPv8jDS8e5BTbs2O6rF/1gDPZUKy/Fm3ulPadJsriOcMk9+jmmGXDHirrNugm/YfOlNyjW5yJlbr1fdlpA1s2TpHPPvqVuh0QKnVUhEqdE6FS50So1DkRKvVOhEqdFaFS50SpczBUmp7I++4fJ9PfnOb0VPqFRLc38rGJE5weULcX0zQYuyfT/NBV1F/thi0l/+hBOVFYUFG7kBbbzWzQVIrzc6Wo4OsS+1szs6XkRxk6muiBmaGmA4aeGVJp/swEOhs/etx5XrO0f02bj3GG6h4vOOg8q2meiTR/Gz54WHZkfzvMNtb6zTsaG2T1lAP7vh0GG638+bUbOs/gHP86p7S7nPLLjbw5W84773xZ+N5gGTjszKtF5r3dU/KP7VTve0ZmXalSLUPyj+xXL3MuFqxWI1NMAP/6S71tqjpVEpHTSdo5EyprNWgqX+3/IklbCMdqzW9tvSaXyeHdm8JxQEk8ivqXtJMjezbzTGUc4zqN20juoV3yzYnYN2eTWFVpseoLG7aQgqM5cqLw7Hc8p8UBJLCTp0/p3wCQwGrPmaKV6tSpk6zfysARY/VUep+b9D5TaUJlv/4DSjwnaYfKJYsXRZ6xtENlg+ZXBX6c7gYrVa4sp0+Z6gtNFSbF0szSetoYnU6u0+XtHpP69XrLV1+tka1fTJbiosNlPp4uXV+TjOpZznoKjx+QTZ//QvLz/Z+hLOvGKlUyl86GKblOZd3Psix/5ZX/JXXqdJFjx7bJBRe0kq++WicbNz6S0CrPOFXigi2eWqVKYv5P86qdeKuq6M+Li/KlWvWaSduNM+fy+K8kStoOpMmKTbDkoi9+ZeEU38iU4HundAroGkq3N8ktdWjnJ8ndQMjXfs6ESrce7eGtZe2prMj2wfBXnb7f8FfdkomVqnXhZVKnQSfZla1/djLeFlq3/ZFc1WWSHNgzV9au+ImcOJEbb5FSfx724a8GxvtMqvnv1Uvukf27z8wGrP1j+KtOiuGvOieGv+qcGP6qczKlmKhHZ8XwV50Tw191TpQ6B4e/mko3s8FmZWU5k+2YnkeeqQz3VyGoUJkMxfPOqykt2vyLfLHphWSsvsQ6z4VQWccMU/7njLhFhUdk1rR2CbsSKnVkhEqdE6FS50So1DkRKvVOhEqdFaFS50SpcyBUmmGv9/94nJjnI81rQNxhsB9v+MiZfIfZX8P/NUjnUBlk7ZwLodJ4jrz5C6larVbCE/S4dUGo1LVKQqXOiVCpcyJU6pwIlXonQqXOilCpc6JUSEKl95UibqV63ydpnpFsc1nbSH3znspzq+kTKnX1fa6EynoNusqFda+Ug3vnS0H+Hh2OpxShUkdGqNQ5ESp1ToRKnROhUu9EqNRZESp1TpQKSag8VyuSZyp1NU+o1DmdK6FSpxG9FKFSJ0io1DkRKnVOhEqdE6FS70So1FkRKnVOlCJUpnUbIFTqqo9QqXMiVOqcCJU6J0KlzolQqXMiVOqcCJV6J0KlzopQqXOiFKEyrdsAoVJXfYRKnROhUudEqNQ5ESp1ToRKnROhUudEqNQ7ESp1VoRKnROlCJVp3QYIlbrqI1TqnAiVOidCpc6JUKlzIlTqnAiVOidCpd6JUKmzIlTqnChFqEzrNkCo1FUfoVLnRKjUOREqdU6ESp0ToVLnRKjUOREq9U6ESp0VoVLnRClCZVq3AUKlrvoIlTonQqXOiVCpcyJU6pwIlTonQqXOiVCpdyJU6qwIlTonShEq07oNECp11Ueo1DkRKnVOhEqdE6FS50So1DkRKnVOhEq9E6FSZ0Wo1DlRilCZ1m2AUKmrPkKlzolQqXMiVOqcCJU6J0KlzolQqXMiVOqdCJU6K0KlzolShEraAAIIIIAAAggggAACCCCAQBkEKtWpU+d0GZZnUQQQQAABBBBAAAEEEEAAgXNYgFB5Dlc+h44AAggggAACCCCAAAIIlFWAUFlWQZZHAAEEEEAAAQQQQAABBM5hAUJlBVT+07+eLN+75VZZvmyp3HrL2KTvwfwFSyQnJ8d3W+azNpe1dfZh65bNMnhQv6Tvj3YDQTm9NnWa9O7TN7Jbdr24+2EK5OXlyaMTHpEZ09/QHkZSy41/8Ody3/3jpFq1apHtJLsejVdWVlaJtnLjmJvkl088JZmZmc5+pJqTvX9mHw8c2C/jHxgnK1csL9c68n6nzIq97clua+6GgzoXaA/U9iouLpYXX5gik599JuYq3OVmvTtTHn5ofNzN+bUldyGzromPTZJXX30l7nbjbihJBZLtFKstmUOyP7fbW5IOu1Srda2qV69eoi3FagOl2pBnIa9Pqp2TvMfmnhe85+5ktf+evXrL5OemSKNGjSO78PrU1yLfV+/vXTLPk2WtW7O8va/J3l/bLtXO295zp/f32Py79hyeaL3Y1yB+3zPv716yfncT3W/KJ0eAUJkc15hrNT905i+zVq2kXNS6G/d+kf1Ofu5+pFKQ9MIF4WR+JB6f9IS88PwUJyjaF8XmhPmDu++VP778knNha0xbtW6d1HrTNkm/C3j7eLTr0pTz/oDbwdV81qRJ08iNi1Ryci8EtmVnl7ix8u7s+bJwwfxyDSy2v/uDO/3Nab4hK1kXjpr6jFbGbVcfb/go4uXWvffi0295baiM1Za8F27JuhAqi4994ZYsJ01bSvVzuNfZbet5x/KkqLAwclMqWaHSPgel0jnJbn/uvlWvVj1yEyVZ5waz3vt/PE4emzjBuaFmvotjvjM2EvTNvuzdu8c5X7nfxbzc3JS64ez6mX0fPmJUiRu95jvRqPHF5X7zN9rvSHmcS8p7HX7nYe05PNF9sX/7jb/32tauo3Q6ZyVqQXlmfw28DZgv+8P/PkH+9vpf5Y477ipxF97+0TMXpLfffqdMenxipGfMvjOtuevj11Npvuj9+g9IiXAU7eI0mpMd9NyT/ZLFiyIX7qVxMvth/3DYFzz2tgNvQJ4N+v2g2vsT686qMaqekeH0cpq71toLeM1FoGbfgrLT1lm0u6mldfJrT34Xk3avb1Au0bYT7eLb/ne7l87cuDLH4o58MOuPdyc/nXsqg3SK1pbS6QLNDUnz5s2RIUOGRn77/M6x7ugL7znJzzvW8dufpdI5Kdp5wIwocs8HfqHSb2SR3/ktkWONdyMolcN4tOO0694+V3lvjvmdx/xGkGl+9yr63G3f8LJHjNhesa4P7M+0I6D8QqR3pFwibTNVPNkPvQA9lXqrcilpvlCdOnV27vrZYS9eqDSfd+h4deQOnPZk7xcq/YbhxeuFKBcA5UpiOcULlaV1Mrtm9yxF+3HSDu9THm6pirn7unPHdt+7yPZdZvsixRxb8xYtS9yh1vTCan5c7buVpTrAclrIvWg4diwv6k0Uu814vzOldTK7H+uCLVk9EWVhi3U33nuTy2zDDK9ye+nMcnffc6+8+85M59+13490DZVBO0VrS/GGx5alLZT3st723rlzl0h48rYB+/vi7UXbsX17ieHQ8b4/9vkx1mMg5X2sia7PNTAjZtwh3/bxen/vzfrNEFa3B9E+tkSONd5Nt1S+cREtoHj/3T5Xac5jd991x1lVaH/XtDdhE20L5VE+2u+O99/ffmt6iTbk/T6tXrWyxGdmn17+01/k5T+8FPdxEb926h0lFK+9lcfxs46KEyBUBmxvTkzr169zetTsE2KsUPnllwedL7n3y1mWUGn/6NhDYAJm8T2BR3OKFSrdE2WiTt67ld7eFdsp3l3doN38nql0bw74nbztsGT21x3+rD3ZxwoC7s2KVHt+yb4bbY7brWe/gODtyTfDo0vjZJaJdUGmCedBtye/Xn93H7zt46KLGp417CxeiPY7lnQPld7REcl0iteWzOfxhloH3Zbs7XkvWr2ByRswo/WkuOdz7/kr3mgbty1nVM+QOnXrptxz3l4f7/fAL2C6F/ne3zWvVfcePSMjj8x3U/sscrwhnaneqxRt/7zB0dh4h8h6z3GmDuzhs37fE7/zon0jsqK/X97tR7tO8R6Huab0PtrjnmNMr+K6dWvO+kxzfPFu+LvnKXu7mnVTJj0ECJUB1pM9nNX+4mtCpfcipjxDZbwflwCZnIsj77DfeM85ek+UbqgsjZM5RtshlXsqo12kd+3W3el9NH/2JD7eMOV3bJqLEU0YSoeLETNZlgngbpvxTlxhnNyh5XaojNdD4tZLrN5abYAP8nvn1/6927cv1PyGzyd60yXdQ6X9nK570eSev7wX+94JoRJ10vb8J9JDFXTbsr83bt17h3z6BcVoQdJ8L6NNQOe9QHaHMqZyCLB7a8152DtM2A2V3t81u8fNPXebUKl5tCXe85KpdqPZr71qeirNd9Cc6+0/c+43f4lYef0T/Q4H+X3T9FSaUBnt+sCESvvRq3j773dTy++6MlV/++IdH5/rBAiVOqdyKeU35NSs2B2rrgmVifbA+f24mn+zL+Zi9VCUy8EnsJJ4TsnoqfTunt9d40R78xI43HIt6v0xMT8asX4Y7FCpPdlrQqU2eJXrwSewMu+P3fO//29nFIBfr5P7/TH/P5E2EC8EpPKQsmg3q7z/fsPoMed0T6V7DvUbLl7eTvHakrfZp1OodM8R3ol74vVUep/LNGHg6Sef8J2J2+/3THt+S+A0Um5F7XOq24bciXvi9VSaSebcujfPZLqjfKLtYBgCpTk2zTOVsXq0E7n56TdqSXMTttwaSQIrihYqvcfbomXLqNcHiX5XYo2S8BsVp+kdTuBwKZpCAoTKgCojWk9grGEa5svoncXMb6y62f14r0Xwu9CwTwKJnFyTSaZxMtv3Prdl9t3tdTLDihNxMidf70x47snYfVbMPrlqe4eTaeSu2/vcqfff3BO2O2TaO3OfOZ4rrrhSzDMjdrDRBh2/UGn+zZ0x0L3g9j7/G4RHtG2YYx5943fkkZ//LPI8iF+9evfXtMOfPfiw/ObZp53Zgb2hMp5TvM8T/cEO2s7+DrgXb97vmF3G/Pett90hk3/zzFnD9GPtf7r2VJpjCsIpVltyzW8aM8ohTod2ZV+EuzcQ3Rurtqlfb5lZxpzDDh3KiTkjqR3G06Wn0tu2vK9f8e5/tHO7mfzv9OnTJSb3s79/8UYlpcq1gOa857ev9nVTtO+pWb8J695nw+3vlHcf7LaYStcCtpVfqLSvk/xuLLjXB+bZSe8zu97fQ/sVXPHOO34T93h/TzX1TJn0ESBUBlRX0b549h1V78Pga9d8KC1btor8QHhn4zIPiZvhed6p2e1DsXv87AfL3ZOMWS5VHjrXOnn3fdeunc4Mpm5PU6JO9gP46fKeSr/nBO1nGe0Z3Lz1bB93vJmEveZuW/M+v+kdSpNKz1TaBtHau/19cdtBIk5+dWK259qa/20/Gx3QKSihzdjH4Xd+sJ/ndb287STa7K+x2pJffcVrmwkdXDkWTqaTti1Fe99gOR5muazKb/SCe4wH9u8rMRLAb/ZXdye0z47a7SiVzkl+v9X2LNDmfOQ+yuC+H9Z7LrJn44zX+2j7ed9tbD5z12ef71Lp+sB28zuP+J0r7O+Sty1EO4/5NXrvb0Qqtye/c4ffOTzW9YG9jmizv0YbWead+NFbJlXP5eVykmMlQqhM40aQykOdUokVJ//aiNejlkp1WJH7glNF6rNtBBBAAAEEEEgHAUJlOtTSP/fRvqOmfW9QGh1iuewqTjpGwhJOOgFKIYAAAggggAACsQUIlbQQBBBAAAEEEEAAAQQQQACBUgsQKktNx4IIIIAAAggggAACCCCAAAKEStoAAggggAACCCCAAAIIIIBAqQUIlaWmY0EEEEAAAQQQQAABBBBAAAFCJW0AAQQQQAABBBBAAAEEEECg1AKEylLTld+C9mylfu8/ivaeH793unnfD2T20vsup1R+t1L5ibImBBBAAAEEEEAAAQQQCEqAUBmUdIztmNDXpElTufWWsU4p86qHzFq1ZPwD42TliuVOKBw+YpQ8OuERmTH9Dedz8zd4UD8xL6i9/8fj5LGJEyJlx3xnrLz4whQxL0w2gfUHd98rf3z5Jee/TTht1bp1ZN0pcPjsAgIIIIAAAggggAACCKSxAKEyBSvPL0Tm5OREQqf9ufcQTMj85RNPyax3Z8rDD413QmRWVpYTQM2fHTJT8PDZJQQQQAABBBBAAAEEEEgjAUJlClaWtzfR7N7k56bItuzsSKiMFQztz+wX3NuhMwUPn11CAAEEEEAAAQQQQACBNBIgVKZYZdmh0H1mcsniRU7PY6zeRresN4CaUOnt5SRUpliFszsIIIAAAggggAACCKS5AKEyhSrQnbBn+pvTIgHSLyj69VS65fJycyNDXc2h0VOZQhXMriCAAAIIIIAAAgggEEIBQmWKVKpfoHR3ze5ttJ+pjBYozfI8U5kiFcxuIIAAAggggAACCCAQUgFCZQpUbLzJc2LN/urXk+k9JGZ/TYEKZhcQQAABBBBAAAEEEAixAKEyBSrX+w5K7+543zcZ7T2V9jsu3eW3btkcGQbLeypToJLZBQQQQAABBBBAAAEEQipAqAxpxXJYCCCAAAIIIIAAAggggEAQAoTKIJTZBgIIIIAAAggggAACCCAQUgFCZUgrlsNCAAEEEEAAAQQQQAABBIIQIFQGocw2EEAAAQQQQAABBBBAAIGQChAqQ1qxHBYCCCCAAAIIIIAAAgggEIQAoTIIZbaBAAIIIIAAAggggAACCIRUgFAZ0orlsBBAAAEEEEAAAQQQQACBIAQIlUEosw0EEEAAAQQQQAABBBBAIKQChMqQViyHhQACCCCAAAIIIIAAAggEIUCoDEKZbSCAAAIIIIAAAggggAACIRUgVIa0YjksBBBAAAEEEEAAAQQQQCAIAUJlEMpsAwEEEEAAAQQQQAABBBAIqQChMqQVy2EhgAACCCCAAAIIIIAAAkEIECqDUGYbCCCAAAIIIIAAAggggEBIBQiVIa1YDgsBBBBAAAEEEEAAAQQQCEKAUBmEMttAAAEEEEAAAQQQQAABBEIqQKgMacVyWAgggAACCCCAAAIIIIBAEAKEyiCU2QYCCCCAAAIIIIAAAgggEFIBQmVIK5bDQgABBBBAAAEEEEAAAQSCECBUBqHMNhBAAAEEEEAAAQQQQACBkAoQKkNasRwWAggggAACCCCAAAIIIBCEAKEyCGW2gQACCCCAAAIIIIAAAgiEVIBQGdKK5bAQQAABBBBAAAEEEEAAgSAECJVBKLMNBBBAAAEEEEAAAQQQQCCkAoTKkFYsh4UAAggggAACCCCAAAIIBCFAqAxCmW0ggAACCCCAAAIIIIAAAiEVIFSGtGI5LAQQQAABBBBAAAEEEEAgCAFCZRDKbAMBBBBAAAEEEEAAAQQQCKkAoTKkFcthIYAAAggggAACCCCAAAJBCBAqg1BmGwgggAACCCCAAAIIIIBASAUIlSGtWA4LAQQQQAABBBBAAAEEEAhCgFAZhDLbQAAHG82pAAABuklEQVQBBBBAAAEEEEAAAQRCKkCoDGnFclgIIIAAAggggAACCCCAQBAChMoglNkGAggggAACCCCAAAIIIBBSAUJlSCuWw0IAAQQQQAABBBBAAAEEghAgVAahzDYQQAABBBBAAAEEEEAAgZAKECpDWrEcFgIIIIAAAggggAACCCAQhAChMghltoEAAggggAACCCCAAAIIhFSAUBnSiuWwEEAAAQQQQAABBBBAAIEgBAiVQSizDQQQQAABBBBAAAEEEEAgpAKEypBWLIeFAAIIIIAAAggggAACCAQhQKgMQpltIIAAAggggAACCCCAAAIhFSBUhrRiOSwEEEAAAQQQQAABBBBAIAgBQmUQymwDAQQQQAABBBBAAAEEEAipAKEypBXLYSGAAAIIIIAAAggggAACQQgQKoNQZhsIIIAAAggggAACCCCAQEgFCJUhrVgOCwEEEEAAAQQQQAABBBAIQoBQGYQy20AAAQQQQAABBBBAAAEEQipAqAxpxXJYCCCAAAIIIIAAAggggEAQAoTKIJTZBgIIIIAAAggggAACCCAQUgFCZUgrlsNCAAEEEEAAAQQQQAABBIIQ+H+EItItSZQG8wAAAABJRU5ErkJggg==", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import plotly.graph_objects as go\n", "\n", "fig = go.Figure([go.Scatter(x=px.index, y=px.close)])\n", "fig.update_layout(template='plotly_dark')\n", "fig.show()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now that you know how to fetch assets and data, you are ready to explore your ideas. For a list of available packages, see [whitelist](https://blueshift.quantinsti.com/api-docs/howtos.html#what-is-the-python-support-on-blueshift). " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 4 }